140 resultados para Island House (Grosse Ile, Mich.)
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
Resumo:
A three day workshop on turbidity measurements was held at the Hawaii Institute of Marine Biology from August 3 1 to September 2, 2005. The workshop was attended by 30 participants from industry, coastal management agencies, and academic institutions. All groups recognized common issues regarding the definition of turbidity, limitations of consistent calibration, and the large variety of instrumentation that nominally measure "turbidity." The major recommendations, in order of importance for the coastal monitoring community are listed below: 1. The community of users in coastal ecosystems should tighten instrument design configurations to minimize inter-instrument variability, choosing a set of specifications that are best suited for coastal waters. The IS0 7027 design standard is not tight enough. Advice on these design criteria should be solicited through the ASTM as well as Federal and State regulatory agencies representing the majority of turbidity sensor end users. Parties interested in making turbidity measurements in coastal waters should develop design specifications for these water types rather than relying on design standards made for the analysis of drinking water. 2. The coastal observing groups should assemble a community database relating output of specific sensors to different environmental parameters, so that the entire community of users can benefit from shared information. This would include an unbiased, parallel study of different turbidity sensors, employing a variety of designs and configuration in the broadest range of coastal environments. 3. Turbidity should be used as a measure of relative change in water quality rather than an absolute measure of water quality. Thus, this is a recommendation for managers to develop their own local calibrations. See next recommendation. 4. If the end user specifically wants to use a turbidity sensor to measure a specific water quality parameter such as suspended particle concentration, then direct measurement of that water quality parameter is necessary to correlate with 'turbidity1 for a particular environment. These correlations, however, will be specific to the environment in which they are measured. This works because there are many environments in which water composition is relatively stable but varies in magnitude or concentration. (pdf contains 22 pages)
Resumo:
The growth of Sarotherodon (Tilapia) niloticus in Opa reservoir, University of Ife was determined from the fish scales. Compared with the growth in other similar water bodies the growth was comparatively faster in this newly-impounded reservoir
Resumo:
The distribution of Oreochromis niloticus was studied in Opa reservoir (Nigeria) using a graded set of gillnets while the food and feeding habits were studied using a castnet to collect the fish samples. About 90% of the fish specimens were caught near the reservoir bottom while about 69% of the specimens were caught within the inshore area of the reservoir. The species fed mainly on detritus, algae and higher plants. Feeding rhythm in O. niloticus started around 6.00 a.m. and reached a peak by 3.00 p.m. but then declined gradually until 6.00 p.m. These results can be utilized for the proper management of the fish species in the reservoir
Resumo:
Oreochromis niloticus is one of the commercial fish species in Opa reservoir. It bred throughout the period of study in the reservoir. The fish species is a maternal mouth brooder with the female specimens carrying eggs and alevins in their mouths. The sex ratio of O. niloticus was 1:1 and the maximum fecundity recorded was 1810 eggs. The fecundity increased as the fish length increased. The relatively high fecundity of the fish species in the reservoir is an indication of the suitability of the small reservoir in contributing to fish production
Resumo:
The sex-ratio of Clarias gariepinus in Opa Reservoir was 2:1 (male/female). The fecundity of C. gariepinus in Opa reservoir ranged between 1,567 and 650,625 egg. The fish species had extended spawning period which probably spreads the risk of predation on the eggs. The population of the fish species could be improved by stocking with the female breeders
Resumo:
Barrier islands are ecosystems that border coastal shorelines and form a protective barrier between continental shorelines and the wave action originating offshore. In addition to forming and maintaining an array of coastal and estuarine habitats of ecological and economic importance, barrier island coastlines also include some of the greatest concentrations of human populations and accompanying anthropogenic development in the world. These islands have an extremely dynamic nature whereby major changes in geomorphology and hydrology can occur over short time periods (i.e. days, hours) in response to extreme episodic storm events such as hurricanes and northeasters. The native vegetation and geological stability of these ecosystems are tightly coupled with one another and are vulnerable to storm-related erosion events, particularly when also disturbed by anthropogenic development. (PDF contains 4 pages)
Resumo:
Approximately two-thirds of coastal and Great Lakes states have some type of shoreline construction setback or construction control line requiring development to be a certain distance from the shoreline or other coastal feature (OCRM, 2008). Nineteen of 30 coastal states currently use erosion rates for new construction close to the shoreline. Seven states established setback distances based on expected years from the shoreline: the remainder specify a fixed setback distance (Heinz Report, 2000). Following public hearings by the County of Kauai Planning Commission and Kauai County Council, the ‘Shoreline Setback and Coastal Protection Ordinance’ was signed by the Mayor of Kauai on January 25, 2008. After a year of experience implementing this progressive, balanced shoreline setback ordinance several amendments were recently incorporated into the Ordinance (#887; Bill #2319 Draft 3). The Kauai Planning Department is presently drafting several more amendments to improve the effectiveness of the Ordinance. The intent of shoreline setbacks is to establish a buffer zone to protect shorefront development from loss due to coastal erosion - for a period of time; to provide protection from storm waves; to allow the natural dynamic cycles of erosion and accretion of beaches and dunes to occur; to maintain beach and dune habitat; and, to maintain lateral beach access and open space for the enjoyment of the natural shoreline environment. In addition, a primary goal of the Kauai setback ordinance is to avoid armoring or hardening of the shore which along eroding coasts has been documented to ultimately eliminate the fronting beach. (PDF contains 4 pages)
Resumo:
Ziel war es festzustellen, ob in den Fischen bei den Färöern und bei Island noch ein Einfluß der Ableitungen der britischen Wiederaufbereitungsanlage Sellafield in die Irische See nachgewiesen werden kann.
Resumo:
This note describes changes to the relative extent of four structurally dominant submerged macrophytes in a pond on Holy Island National Nature Reserve, Northumbria, between 1991 and 1998. The estimated extent of the four submerged macrophytes and bare substratum between 1991 and 1998 showed dramatic changes with no obvious pattern or periodicity, as well as no identifiable natural or anthropogenic causes. Chaotic variation may be an important character of submerged pond plant populations, so that surveys taken in a single year may give an unreliable picture of plant populations.