59 resultados para History of Medicine, Ancient.
Resumo:
The Argentine sandperch Pseudopercis semifasciata (Pinguipedidae) sustains an important commercial and recreational fishery in the northern Patagonian gulfs of Argentina. We describe the morphological features of larvae and posttransition juveniles of P. semifasciata and analyze the abundance and distribution of early life-history stages obtained from 19 research cruises conducted on the Argentine shelf between 1978 and 2001. Pseudopercis semifasciata larvae were distinguished from other larvae by the modal number of myomeres (between 36 and 38), their elongated body, the size of their gut, and by osteological features of the neuro- and branchiocranium. Pseudopercis semifasciata and Pinguipes brasilianus (the other sympatric species of pinguipedid fishes) posttransition juveniles were distinguished by their head shape, pigmentation pattern, and by the number of spines of the dorsal fin (five in P. semifasciata and seven in P. brasilianus). The abundance and distribution of P. semifasciata at early stages indicate the existence of at least three offshore reproductive grounds between 42−43°S, 43−44°S, and 44−45°S, and a delayed spawning pulse in the southern stocks.
Resumo:
Oysters, Crassostrea virginica, and softshell clams, Mya arenaria, along the Massachusetts coast were harvested by European colonists beginning in the 1600’s. By the 1700’s, official Commonwealth rules were established to regulate their harvests. In the final quarter of the 1800’s, commercial fishermen began harvesting northern quahogs, Mercenaria mercenaria, and northern bay scallops, Argopecten irradians irradians, and regulations established by the Massachusetts Legislature were applied to their harvests also. Constables (also termed wardens), whose salaries were paid by the local towns, enforced the regulations, which centered on restricting harvests to certain seasons, preventing seed from being taken, and personal daily limits on harvests. In 1933, the Massachusetts Legislature turned over shellfisheries management to individual towns. Local constables (wardens) enforced the rules. In the 1970’s, the Massachusetts Shellfish Officers Association was formed, and was officially incorporated in 2000, to help the constables deal with increasing environmental problems in estuaries where fishermen harvest mollusks. The constables’ stewardship of the molluscan resources and the estuarine environments and promotion of the fisheries has become increasingly complex.
Resumo:
Thirteen bottom trawl surveys conducted in Alaska waters for red king crab, Paralithodes camtschaticus, during 1940–61 are largely forgotten today even though they helped define our current knowledge of this resource. Government publications on six exploratory surveys (1940–49, 1957) included sample locations and some catch composition data, but these documents are rarely referenced. Only brief summaries of the other seven annual (1955–61) grid-patterned trawl surveys from the eastern Bering Sea were published. Although there have been interruptions in sampling and some changes in the trawl survey methods, a version of this grid-patterned survey continues through the present day, making it one of the oldest bottom-trawl surveys in U.S. waters. Unfortunately, many of the specific findings made during these early efforts have been lost to the research community. Here, we report on the methods, results, and significance of these early surveys, which were collated from published reports and the unpublished original data sheets so that researchers might begin incorporating this information into stock assessments, ecosystem trend analyses, and perhaps even revise the baseline population distribution and abundance estimates.
Resumo:
This is a broad historical overview of the bay scallop, Argopecten irradians, fishery on the East and Gulf Coasts of North America (Fig. 1). For a little over a century, from about the mid 1870’s to the mid 1980’s, bay scallops supported large commercial fisheries mainly in the U.S. states of Massachusetts, New York, and North Carolina and on smaller scales in the states in between and in western Florida. In these states, the annual harvests and dollar value of bay scallops were far smaller than those of the other important commercial mollusks, the eastern oysters, Crassostrea virginica, and northern quahogs, Mercenaria mercenaria, but they were higher than those of softshell clams, Mya arenaria (Table 1). The fishery had considerable economic importance in the states’ coastal towns, because bay scallops are a high-value product and the fishery was active during the winter months when the economies in most towns were otherwise slow. The scallops also had cultural importance as a special food, an ornament owing to its pretty shell design, and an interesting biological component of
Resumo:
This article covers the biology and the history of the bay scallop habitats and fishery from Massachusetts to North Carolina. The scallop species that ranges from Massachusetts to New York is Argopecten irradians irradians. In New Jersey, this species grades into A. i. concentricus, which then ranges from Maryland though North Carolina. Bay scallops inhabit broad, shallow bays usually containing eelgrass meadows, an important component in their habitat. Eelgrass appears to be a factor in the production of scallop larvae and also the protection of juveniles, especially, from predation. Bay scallops spawn during the warm months and live for 18–30 months. Only two generations of scallops are present at any time. The abundances of each vary widely among bays and years. Scallops were harvested along with other mollusks on a small scale by Native Americans. During most of the 1800’s, people of European descent gathered them at wading depths or from beaches where storms had washed them ashore. Scallop shells were also and continue to be commonly used in ornaments. Some fishing for bay scallops began in the 1850’s and 1860’s, when the A-frame dredge became available and markets were being developed for the large, white, tasty scallop adductor muscles, and by the 1870’s commercial-scale fishing was underway. This has always been a cold-season fishery: scallops achieve full size by late fall, and the eyes or hearts (adductor muscles) remain preserved in the cold weather while enroute by trains and trucks to city markets. The first boats used were sailing catboats and sloops in New England and New York. To a lesser extent, scallops probably were also harvested by using push nets, picking them up with scoop nets, and anchor-roading. In the 1910’s and 1920’s, the sails on catboats were replaced with gasoline engines. By the mid 1940’s, outboard motors became more available and with them the numbers of fishermen increased. The increases consisted of parttimers who took leaves of 2–4 weeks from their regular jobs to earn extra money. In the years when scallops were abundant on local beds, the fishery employed as many as 10–50% of the towns’ workforces for a month or two. As scallops are a higher-priced commodity, the fishery could bring a substantial amount of money into the local economies. Massachusetts was the leading state in scallop landings. In the early 1980’s, its annual landings averaged about 190,000 bu/yr, while New York and North Carolina each landed about 45,000 bu/yr. Landings in the other states in earlier years were much smaller than in these three states. Bay scallop landings from Massachusetts to New York have fallen sharply since 1985, when a picoplankton, termed “brown tide,” bloomed densely and killed most scallops as well as extensive meadows of eelgrass. The landings have remained low, large meadows of eelgrass have declined in size, apparently the species of phytoplankton the scallops use as food has changed in composition and in seasonal abundance, and the abundances of predators have increased. The North Carolina landings have fallen since cownose rays, Rhinoptera bonsais, became abundant and consumed most scallops every year before the fishermen could harvest them. The only areas where the scallop fishery remains consistently viable, though smaller by 60–70%, are Martha’s Vineyard, Nantucket, Mass., and inside the coastal inlets in southwestern Long Island, N.Y.
Resumo:
In the 1500’s, the waters of Venezuela and to a lesser extent Colombia produced more natural pearls than any place ever produced in the world in any succeeding century. Atlantic pearl-oysters, Pinctata imbricata Röding 1798, were harvested almost entirely by divers. The pearls from them were exported to Spain and other European countries. By the end of the 1500’s, the pearl oysters had become much scarcer, and little harvesting took place during the 1600’s and 1700’s. Harvesting began to accelerate slowly in the mid 1800’s and has since continued but at a much lower rate than in the 1500’s. The harvesting methods have been hand collecting by divers until the early 1960’s, dredging from the 1500’s to the present, and hardhat diving from 1912 to the early 1960’s. Since the mid 1900’s, Japan and other countries of the western Pacific rim have inundated world markets with cultured pearls that are of better quality and are cheaper than natural pearls, and the marketing of natural pearls has nearly ended. The pearl oyster fishery in Colombia ended in the 1940’s, but it has continued in Venezuela with the fishermen selling the meats to support themselves; previously most meats had been discarded. A small quantity of pearls is now taken, and the fishery, which comprised about 3,000 fishermen in 1947, comprised about 300 in 2002.
Resumo:
Aboriginal Australians consumed oysters before settlement by Europeans as shown by the large number of kitchen middens along Australia's coast. Flat oysters, Ostrea angasi, were consumed in southeastern Australia, whereas both flat and Sydney rock oysters, Saccostrea glomerata, are found in kitchen middens in southern New South Wales (NSW), but only Sydney rock oysters are found in northern NSW and southern Queensland. Oyster fisheries began with the exploitation of dredge beds, for the use of oyster shell for lime production and oyster meat for consumption. These natural oyster beds were nealy all exhausted by the late 1800's, and they have not recovered. Oyster farming, one of the oldest aquaculture industries in Australia, began as the oyster fisheries declined in the late 1800's. Early attempts at farming flat oysters in Tasmania, Victoria, and South Australia, which started in the 1880's, were abandoned in the 1890's. However, a thriving Sydney rock oyster industry developed from primitive beginnings in NSW in the 1870's. Sydney rock oysters are farmed in NSW, southern Queensland, and at Albany, Western Australia (WA). Pacific oysters, Crassostrea gigas, are produced in Tasmania, South Australia, and Port Stephens, NSW. FLant oysters currently are farmed only in NSW, and there is also some small-scale harvesting of tropical species, the coarl rock or milky oyster, S. cucullata, and th black-lip oyster, Striostrea mytiloides, in northern Queensland. Despite intra- and interstate rivalries, oyster farmers are gradually realizing that they are all part of one industry, and this is reflected by the establishment of the national Australian Shellfish Quality Assuarance Program and the transfer of farming technology between states. Australia's oyster harvests have remained relatively stable since Sydney rock oyster production peaked in the mid 1970's at 13 million dozen. By the end of the 1990's this had stabilized at around 8 million dozen, and Pacific oyster production reached a total of 6.5 million dozen from Tasmania, South Australia, and Port Stephens, a total of 14.5 million dozen oysters for the whole country. This small increase in production during a time of substantial human population growth shows a smaller per capita consumption and a declining use of oysters as a "side-dish."
Resumo:
Belugas, Delphinapterus leucas, in Cook Inlet, Alaska, represent a unique and isolated marine mammal population that has been hunted for a variety of purposes since prehistoric times. Archeological studies have shown that both Alutiiq Eskimos and Dena'ina Atabaskan Indians have long utilized many marine resources in Cook Inlet, including belugas. Over the past century, commercial whaling and sport hunting also occurred periodically in Cook Inlet prior to the Marine Mammal Protection Act of 1972 (MMPA). During the 1990's, the hunting mortality by Alaska Natives apparently increased to 40-70 whales per year, which led to the decling of this stock and its subsequent designation in 2000 as depleted under the MMPA. Concerns about the decline of the Cook Inlet stock resulted in a voluntary suspension of the subsistenc hunt by Alaska Natives in 1999. The difficulty in obtaining accurate estimates for the harvest of these whales is due to the inability to identify all of the hunters and, in turn, the size of the harvest. Attempts to reconstruct harvest records based on hunters' recollections and interviews from only a few households have been subject to a wide degree of speculation. To adequately monitor the beluga harvest, the National Marine Fisheries Service established marking and reporting regulations in October 1999. These rules require that Alaska Natives who hunt belugas in Cook Inlet must collect the lowere left jaw from harvested whales and complete a report that includes date and time of the harvest, coloration of the whale, harvest location, and method of harvest. The MMPA was amended in 2000 to require a cooperative agreement between the National Marine Fisheries Service and Alaska Native organizations before hunting could be resumed.
Resumo:
Spencer Fullerton Baird (Fig. 1), a noted systematic zoologist and builder of scientific institutions in 19th century America, persuaded the U.S. Congress to establish the United States Commission of Fish and Fisheries1 in March 1871. At that time, Baird was Assistant Secretary of the Smithsonian Institution. Following the death of Joseph Henry in 1878, he became head of the institution, a position he held until his own demise in 1887. In addition to his many duties as a Smithsonian official, including his prominent role in developing the Smithsonian’s Federally funded National Museum as the repository for governmental scientific collections, Baird directed the Fish Commission from 1871 until 1887. The Fish Commission’s original mission was to determine the reasons and remedies for the apparent decline of American fisheries off southern New England as well as other parts of the United States. In 1872, Congress further directed the Commission to begin a large fish hatching program aimed at increasing the supply of American food f
Resumo:
This study, part of a broader investigation of the history of exploitation of right whales, Balaena glacialis, in the western North Atlantic, emphasizes U.S. shore whaling from Maine to Delaware (from lat. 45°N to 38°30'N) in the period 1620–1924. Our broader study of the entire catch history is intended to provide an empirical basis for assessing past distribution and abundance of this whale population. Shore whaling may have begun at Cape Cod, Mass., in the 1620’s or 1630’s; it was certainly underway there by 1668. Right whale catches in New England waters peaked before 1725, and shore whaling at Cape Cod, Martha’s Vineyard, and Nantucket continued to decline through the rest of the 18th century. Right whales continued to be taken opportunistically in Massachusetts, however, until the early 20th century. They were hunted in Narragansett Bay, R.I., as early as 1662, and desultory whaling continued in Rhode Island until at least 1828. Shore whaling in Connecticut may have begun in the middle 1600’s, continuing there until at least 1718. Long Island shore whaling spanned the period 1650–1924. From its Dutch origins in the 1630’s, a persistent shore whaling enterprise developed in Delaware Bay and along the New Jersey shore. Although this activity was most profi table in New Jersey in the early 1700’s, it continued there until at least the 1820’s. Whaling in all areas of the northeastern United States was seasonal, with most catches in the winter and spring. Historically, right whales appear to have been essentially absent from coastal waters south of Maine during the summer and autumn. Based on documented references to specific whale kills, about 750–950 right whales were taken between Maine and Delaware, from 1620 to 1924. Using production statistics in British customs records, the estimated total secured catch of right whales in New England, New York, and Pennsylvania between 1696 and 1734 was 3,839 whales based on oil and 2,049 based on baleen. After adjusting these totals for hunting loss (loss-rate correction factor = 1.2), we estimate that 4,607 (oil) or 2,459 (baleen) right whales were removed from the stock in this region during the 38-year period 1696–1734. A cumulative catch estimate of the stock’s size in 1724 is 1,100–1,200. Although recent evidence of occurrence and movements suggests that right whales continue to use their traditional migratory corridor along the U.S. east coast, the catch history indicates that this stock was much larger in the 1600’s and early 1700’s than it is today. Right whale hunting in the eastern United States ended by the early 1900’s, and the species has been protected throughout the North Atlantic since the mid 1930’s. Among the possible reasons for the relatively slow stock recovery are: the very small number of whales that survived the whaling era to become founders, a decline in environmental carrying capacity, and, especially in recent decades, mortality from ship strikes and entanglement in fishing gear.
Resumo:
The pearl oyster, Pinctada margaritifera mazatlanica, was once found around the Archipielago de las Perlas in Panama in abundance and it supported a substantial fishery by hard hat divers. The products were pearls, shells used for making buttons, and meats used locally for food. After the mid 1920’s, the fishery declined due to overfishing, and by the 1940’s it was nearly gone. The oysters began to repopulate the grounds during the 1970’s, but the oysters remain relatively scarce. Fishing has since resumed on a small scale by skin divers using face masks.
Resumo:
Bycatch management measures instituted for groundfish fisheries of the eastern Bering Sea have focused on reducing the incidental capture and injury of species traditionally harvested by other fisheries. These species include king crab, Paralithodes and Lithodes spp.; Tanner crab, Chionoecetes spp.; Pacific herring, Clupea harengus pallasi; Pacific halibut, Hippoglossus stenolepis; and Pacific salmon and steelhead trout, Oncorhynchus spp. Collectively, these species are called "prohibited species," as they cannot be retained as bycatch in groundfish fisheries and must be discarded with a minimum of injury.
Resumo:
Oyster landings in the United States and Canada have been based mainly on three species, the native eastern oyster, Crassostrea virginica, native Olympia oyster, Ostreola conchaphila, and introduced Pacific oyster, C. gigas. Landings reached their peak of around 27 million bushels/year in the late 1800's and early 1900's when eastern oysters were a common food throughout the east coast and Midwest. Thousands of people were involved in harvesting them with tongs and dredges and in shucking, canning, packing, and transporting them. Since about 1906, when the United States passed some pure food laws, production has declined. The causes have been lack of demand, siltation of beds, removal of cultch for oyster larvae while harvesting oysters, pollution of market beds, and oyster diseases. Production currently is about 5.6 million bushels/year.
Resumo:
The Northeast Fisheries Science Center of NOAA's National Marine Fisheries Service has a long history of research on benthic invertebrates and habitats in support of the management of living marine resources. These studies began in the 1870's under Spencer F. Baird's guidance as part of an effort to characterize the Nation's fisheries and living marine resources and their ecological interactions. This century and a quarter of research has included many benthic invertebrate studies, including community characterizations, shellfish biology and culture, pathology, ecosystem energy budget modeling, habitat evaluations, assessments of human impacts, toxic chemical bioaccumulation in demersal food webs, habitat or endangered species management, benthic autecology, systematics (to define new species and species population boundaries), and other benthic studies. Here we review the scope of past and current studies as a background for strategic research planning and suggest areas for further research to support NOAA's goals of sustainable fisheries management, healthy coastal ecosystems, and protected species populations.
Resumo:
Yellowfin sole, Pleuronectes asper, is the second most abundant flatfish in the North Pacific Ocean and is most highly concentrated in the eastern Bering Sea. It has been a target species in the eastern Bering Sea since the mid-1950's, initially by foreign distant-water fisheries but more recently by U.S. fisheries. Annual commercial catches since 1959 have ranged from 42,000 to 554,000 metric tons (t). Yellowfin sole is a relatively small flatfish averaging about 26 cm in length and 200 g in weight in commercial catches. It is distributed from nearshore waters to depths of about 100 m in the eastern Bering Sea in summer, but moves to deeper water in winter to escape sea ice. Yellowfin sole is a benthopelagic feeder. It is a longlived species (>20 years) with a correspondingly low natural mortality rate estimated at 0.12. After being overexploited during the early years of the fishery and suffering a substantial decline in stock abundance, the resource has recovered and is currently in excellent condition. The biomass during the 1980's may have been as high as, if not higher than, that at the beginning of the fishery. Based on results of demersal trawl surveys and two age structured models, the current exploitable biomass has been estimated to range between 1.9 and 2.6 million t. Appropriate harvest strategies were investigated under a range of possible recruitment levels. The recommended harvest level was calculated by multiplying the yield derived from the FOI harvest level (161 g at F = 0.14) hy an average recruitment value resulting in a commercial harvest of 276,900 t, or about 14% of the estimated exploitable biomass.