88 resultados para Historical Materialism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the initial description of a species of Sebastes from the Atlantic in the late 1700’s, in the late 1800’s the incredible taxonomic diversity of the genus began to be recognized as more species were discovered in northeast Pacific waters. With over 100 species, most of them from the North Pacific, the genus Sebastes (rockfishes) now presents taxonomic problems at every level. For example, although early efforts to understand relationships among the species resulted in the erection of several subgenera, those and more recent efforts remain largely unsuccessful. Also, the position of the genus within the order Scorpaeniformes, as well as the limits of the genus and the validity of some species are all unresolved. This paper examines the worldwide history and status of taxonomic studies on Sebastes, and reviews the 23 subgenera that have been erected over the years. This review of research, which includes morphological and genetic studies, provides a framework against which to evaluate studies using new genetic techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the Effect of water quality on coarse fish productivity and movement in the Lower River Irwell and Upper Manchester Ship Canal: a watercourse recovering from historical pollution report produced by the Environment Agency in 2003. The aim of this study was to investigate the impact of water quality upon coarse fish population dynamics in a lowland, urban watercourse. All of the research carried was undertaken in the lower River Irwell and upper Manchester Ship Canal, between February 1998 and December 2001. Of particular interest was the natural sustainability of the urban fishery given recent concern raised in the angling community over an apparent decline in coarse fish populations in lowland rivers. The research described in this report has concentrated upon the role of water quality in determining coarse fish population dynamics, and in particular: The impact of water quality upon fish growth and productivity; The impact of poor water quality and low dissolved oxygen concentrations upon fish distribution and movement; The impact of water quality upon the sexual development of fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of the relative productivity and value of the shad fisheries of North America as reflected in recorded commercial catches. A review of reasons for the decline that are biological and socioeconomic. Factors that have been held responsible are: pollution; destruction or impairment of spawning and nursery areas; overfishing; hydroelectric and canal dams; natural fluctuations in abundance. Natural catastrophes, parasites, and predators are not considered important in causing the decrease in commercial production. Attempts to rehabilitate the fisheries by various means of stocking artificially-reared fry and pond-reared fingerling shad, appear to have failed in every instance. Introduction of shad fry on the Pacific Coast has resulted in a major fishery. The most significant program is a controlled catch management plan, operating at this time [1953] only in Maryland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt River Bay National Historical Park and Ecological Preserve (hereafter, SARI or the park) was created in 1992 to preserve, protect, and interpret nationally significant natural, historical, and cultural resources (United States Congress 1992). The diverse ecosystem within it includes a large mangrove forest, a submarine canyon, coral reefs, seagrass beds, coastal forests, and many other natural and developed landscape elements. These ecosystem components are, in turn, utilized by a great diversity of flora and fauna. A comprehensive spatial inventory of these ecosystems is required for successful management. To meet this need, the National Oceanic and Atmospheric Administration (NOAA) Biogeography Program, in consultation with the National Park Service (NPS) and the Government of the Virgin Islands Department of Planning and Natural Resources (VIDPNR), conducted an ecological characterization. The characterization consists of three complementary components: a text report, digital habitat maps, and a collection of historical aerial photographs. This ecological characterization provides managers with a suite of tools that, when coupled with the excellent pre-existing body of work on SARI resources, enables improved research and monitoring activities within the park (see Appendix F for a list of data products).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the 1940s until 2003, portions of the island of Vieques, a municipality within the Commonwealth of Puerto Rico, were used by the US Navy as a base and training facility, resulting in development and zoning history that differ in comparison to other Caribbean islands. The majority of former Navy lands are now under the jurisdiction of the Department of the Interior’s Fish and Wildlife Service as a National Wildlife Refuge, while a smaller percentage of land was transferred to the Vieques municipality and the Puerto Rico Conservation Trust. An analysis of the distribution and status of the marine resources is timely in light of the recent land transfer, increases in development and tourism, and potential changes in marine zoning around the island. To meet this need, NOAA’s Biogeography Branch, in cooperation with the Office of Response and Restoration and other local and regional partners, conducted Part I of an ecological characterization to integrate historical data and research into a synthesis report. The overall objective of this report is to provide resource managers and residents a comprehensive characterization of the marine resources of Vieques to support research, monitoring, and management. For example, knowledge of the spatial distribution of physical features, habitats, and biological communities is necessary to make an informed decision of the establishment and placement of a marine protected area (MPA). The report is divided into chapters based on the physical environment (e.g., climate, geology, bathymetry), habitat types (e.g., reefs and hardbottom, seagrasses, mangroves) and major faunal groups (e.g. fish, turtles, birds). Each section includes five subsections: an overview, description of the relevant literature, methods of analysis, information on the distribution, status and trends of the particular resource, and a discussion of ecological linkages with other components of the Vieques marine ecosystem and surrounding environment. The physical environment of Vieques is similar to other islands within the Greater Antilles chain, with some distinctions. The warm, tropical climate of Vieques, mediated by the northeasterly trade winds, is characterized by a dry season (December-April) and a rainy season (May-November), the latter of which is characterized by the occasional passage of tropical cyclones. Compared to mainland Puerto Rico, Vieques is characterized by lower elevation, less annual precipitation, and higher average temperatures. The amount of annual precipitation also varies spatially within Vieques, with the western portion of the island receiving higher amounts of rainfall than further east. While the North Equatorial Current dominates the circulation pattern in the Greater Antilles region, small scale current patterns specific to Vieques are not as well characterized. These physical processes are important factors mitigating the distribution and composition of marine benthic habitats around Vieques. In general, the topography of Vieques is characterized by rolling hills. Mt. Pirata, the tallest point at 301 m, is located near the southwest coast. In the absence of island wide sedimentation measurements, information on land cover, slope, precipitation, and soil type were used to estimate relative erosion potential and sediment delivery for each watershed. While slope and precipitation amount are the primary driving factors controlling runoff, land use practices such as urban development, military activity, road construction, and agriculture can increase the delivery of pollution and sediments to coastal waters. Due to the recent land transfer, increased development and tourism is expected, which may result in changes in the input of sediments to the coastal environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary productivity in many coastal systems is nitrogen (N) limited; although, phytoplankton productivity may be limited by phosphorus (P) seasonally or in portions of an estuary. Increases in loading of limiting nutrients to coastal ecosystems may lead to eutrophication (Nixon 1996). Anthropogenically enhanced eutrophication includes symptoms such as loss of seagrass beds, changes in algal community composition, increased algal (phytoplankton) blooms (Richardson et al. 2001), hypoxic or anoxic events, and fish kills (Bricker et al. 2003).