89 resultados para Group Migration
Resumo:
Planktobenthos was sampled in 1957-58 in the river Amur. A determination of the kind of organisms drifting in the mass of water of the Amur was carried out. Of special interest for the authors was the activity of drifting of benthic larvae.
Resumo:
The passive spread of a high percentage of freshwater organisms is one of the most important requirements in short-lived and insular communities for species to attai n and survive - and consequently to balance the lack of a topographical continuity of most inland waters. Unfortunately hardly anything is known about the amounts of seed material typical for any lake into which it is carried. The causes of passive dissemination - wind, water and animals as well as man - are confirmed by many examples. It has been assumed now for at least a hundered years that , among animals, birds play a prominent role, although also disappointingly few facts are at hand. The passage and spread through birds' intestines has up to now been supported only by some limited data. This paper reports on experimental research where the eggs of Daphnia magna, Triops cancriformis, Artemia salina, Diaptomus spinosus and Cypris pubera were introduced by means of gelatine capsules into the oesophagus of a drake. The bird's excrements were inspected under a microscope for eggs and resting stages, and these were transferred into corresponding cultures.
Resumo:
This report to the Thames Water Authority and Central Water Planning Unit is on research carried out in conjunction with the Stage 1 Group Pumping Test of five boreholes in the upper Lambourn Group for a period of three months in September, October and November 1975. The aim of the study was to assess the ecological effects of the pumpin g of five bore-holes in the upper Lambourn. That is, to determine how the seasonal sequence of ecological events in the river differed from what would hav e occurred had no pumping taken place. Since this 'experiment' has no control it is not possible to make a direct assessment. Nevertheless, by careful monitoring of ecological events before, during and after the pumping it is possible to document changes in th e river and by reference to the data already available for the Rive r Lambourn, normal seasonal changes in the flora and fauna can be separated from changes which may be attributable to the pumping and subsequent events.
Resumo:
The Drought Monitoring workshop of October 1996, held at the Jarvis Leyland Hotel in Preston, England, established 4 priority issues for dealing with the question: How do we monitor the environment to pick up unexpected change ? 1. Review existing data, and review related study areas throughout the country. 2. Modelling and analysis of data 3. Monitoring / new data / sentinel species' 4. Public relations / Promotion. A group was set up to review issue 1 and feedback to the main group. This report establishes this feedback to the group and refers to existing data / monitoring, other Regional and national work, external Organisations and Recommendations. Appendix 1, is a summary of work completed at the workshop.
Resumo:
The pink shrimp Penaeus duorarum spawns from 25 to 60m, mostly in summer (October to June). Size at first sexual maturity is 31 mm (carapace length). The observed difference with the Caribbean pink shrimp is analysed. Immature shrimps migrate all year round but a peak migration occurs from January to March (in summer) and is associated with maximum salinities. A secondary peak migration occurs in October corresponding to minimum salinity and maximum river discharge. The action of salinity on migration is discussed and a preponderant action of currents in the process is also suggested. Migration is also related to moon phase, tide and day-night cycles. Migration intensity as expressed by catch per unit of effort is maximum at night, during ebb tide, on new and full moon. Seasonal variation of mean migration size and abundance are related by a negative linear correlation on a logarithmic plot (R = 0.776). This phenomenon is perhaps related to competition for food.
Resumo:
During the last century, the population of Pacific sardine (Sardinops sagax) in the California Current Ecosystem has exhibited large fluctuations in abundance and migration behavior. From approximately 1900 to 1940, the abundance of sardine reached 3.6 million metric tons and the “northern stock” migrated from offshore of California in the spring to the coastal areas near Oregon, Washington, and Vancouver Island in the summer. In the 1940s, the sardine stock collapsed and the few remaining sardine schools concentrated in the coastal region off southern California, year-round, for the next 50 years. The stock gradually recovered in the late 1980s and resumed its seasonal migration between regions off southern California and Canada. Recently, a model was developed which predicts the potential habitat for the northern stock of Pacific sardine and its seasonal dynamics. The habitat predictions were successfully validated using data from sardine surveys using the daily egg production method; scientific trawl surveys off the Columbia River mouth; and commercial sardine landings off Oregon, Washington, and Vancouver Island. Here, the predictions of the potential habitat and seasonal migration of the northern stock of sardine are validated using data from “acoustic–trawl” surveys of the entire west coast of the United States during the spring and summer of 2008. The estimates of sardine biomass and lengths from the two surveys are not significantly different between spring and summer, indicating that they are representative of the entire stock. The results also confirm that the model of potential sardine habitat can be used to optimally apply survey effort and thus minimize random and systematic sampling error in the biomass estimates. Furthermore, the acoustic–trawl survey data are useful to estimate concurrently the distributions and abundances of other pelagic fishes.
Resumo:
A generalized Bayesian population dynamics model was developed for analysis of historical mark-recapture studies. The Bayesian approach builds upon existing maximum likelihood methods and is useful when substantial uncertainties exist in the data or little information is available about auxiliary parameters such as tag loss and reporting rates. Movement rates are obtained through Markov-chain Monte-Carlo (MCMC) simulation, which are suitable for use as input in subsequent stock assessment analysis. The mark-recapture model was applied to English sole (Parophrys vetulus) off the west coast of the United States and Canada and migration rates were estimated to be 2% per month to the north and 4% per month to the south. These posterior parameter distributions and the Bayesian framework for comparing hypotheses can guide fishery scientists in structuring the spatial and temporal complexity of future analyses of this kind. This approach could be easily generalized for application to other species and more data-rich fishery analyses.
Resumo:
Oceanic incidence and spawning frequency of Chesapeake Bay striped bass (Morone saxatilis) were estimated by using microchemical analysis of strontium in otoliths. Otoliths from 40 males and 82 females sampled from Maryland’s portion of the Chesapeake Bay were analyzed for seasonal and age-specific patterns in strontium and calcium levels. The proportion of oceanic females increased from 50% to 75% between ages seven to 13; the proportion of oceanic males increased from 20% to ~50% between ages four to 13. Contrary to an earliermodel of Chesapeake Bay striped bass migration, results indicated that a substantial number of males undertook oceanic migrations. Further, we observed no mass emigration of females from three to four years of age from the Chesapeake Bay. Seasonal patterns of estuarine habitat use were consistent with annual spawning runs by striped bass of mature age classes, but with noteworthy exceptions for newly mature females. Evidence of an early oceanic presence indicated that Chesapeake Bay yearlings move into coastal regions—a pattern observed also for Hudson River striped bass. Otolith microchemical analyses revealed two types of behaviors (estuarine and oceanic) that confirm migratory behaviors recently determined for other populations of striped bass and diadromous species (e.g., American eels [Anguilla rostrata] American shad [Alosa sapidissima] and white perch [Morone Americana]).
Resumo:
EXECUTIVE SUMMARY: At present, the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) criteria used to assess whether a population qualifies for inclusion in the CITES Appendices relate to (A) size of the population, (B) area of distribution of the population, and (C) declines in the size of the population. Numeric guidelines are provided as indicators of a small population (less than 5,000 individuals), a small subpopulation (less than 500 individuals), a restricted area of distribution for a population (less than 10,000 km2), a restricted area of distribution for a subpopula-tion (less than 500 km2), a high rate of decline (a decrease of 50% or more in total within 5 years or two generations whichever is longer or, for a small wild population, a decline of 20% or more in total within ten years or three generations whichever is longer), large fluctuations (population size or area of distribution varies widely, rapidly and frequently, with a variation greater than one order of magnitude), and a short-term fluctuation (one of two years or less). The Working Group discussed several broad issues of relevance to the CITES criteria and guidelines. These included the importance of the historical extent of decline versus the recent rate of decline; the utility and validity of incorporating relative population productivity into decline criteria; the utility of absolute numbers for defining small populations or small areas; the appropriateness of generation times as time frames for examining declines; the importance of the magnitude and frequency of fluctuations as factors affecting risk of extinction; and the overall utility of numeric thresh-olds or guidelines.
Resumo:
Aspects of the feeding migration of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea (EBS) were investigated by examining the relationship between temperatures and densities of fish encountered during acoustic and bottom trawl surveys conducted in spring and summer between 1982 and 2001. Bottom temperature was used as an indicator of spring and summer warming of the EBS. Clusters of survey stations were identified where the density of walleye pollock generally increased or decreased with increasing water temperature. Inferences about the direction and magnitude of the spring and summer feeding migration were made for five length categories of walleye pollock. Generally, feeding migrations appeared to be northward and shoreward, and the magnitude of this migration appeared to increase with walleye pollock size up to 50 cm. Pollock larger then 50 cm showed limited migratory behavior. Pollock may benefit from northward feeding migrations because of the changes in temperature, zooplankton production, and light conditions. Ongoing climate changes may affect pollock distribution and create new challenges for pollock management in the EBS.