39 resultados para Great powers
Resumo:
Age-based analyses were used to demonstrate consistent differences in growth between populations of Acanthochromis polyacanthus (Pomacentridae) collected at three distance strata across the continental shelf (inner, mid-, and outer shelf) of the central Great Barrier Reef (three reefs per distance stratum). Fish had significantly greater maximum lengths with increasing distance from shore, but fish from all distances reached approximately the same maximum age, indicating that growth is more rapid for fish found on outer-shelf reefs. Only one fish collected from inner-shelf reefs reached >100 mm SL, whereas 38−67% of fish collected from the outer shelf were >100 mm SL. The largest age class of adult-size fish collected from inner and mid-shelf locations comprised 3−4 year-olds, but shifted to 2-year-olds on outer-shelf reefs. Mortality schedules (Z and S) were similar irrespective of shelf position (inner shelf: 0.51 and 60.0%; mid-shelf: 0.48 and 61.8%; outer shelf: 0.43 and 65.1%, respectively). Age validation of captive fish indicated that growth increments are deposited annually, between the end of winter and early spring. The observed cross-shelf patterns in adult sizes and growth were unlikely to be a result of genetic differences between sample populations because all fish collected showed the same color pattern. It is likely that cross-shelf variation in quality and quantity of food, as well as in turbidity, are factors that contribute to the observed patterns of growth. Similar patterns of cross-shelf mortality indicate that predation rates varied little across the shelf. Our study cautions against pooling demographic parameters on broad spatial scales without consideration of the potential for cross-shelf variabil
Resumo:
Tonle Sap, the Great Lake of Cambodia fisheries and fish production are discussed considering also the problems affecting the lake.
Resumo:
The Philippine Expedition of 1907-10 was the longest and most extensive assignment of the Albatross's 39-year career. It came about because the United States had acquired the Philippines following the Spanish-American War of 1898 and the bloody Philippine Insurection of 1899-1902. The purpose of the expedition was to surbey and assess the aquatic resources of the Philippine Islands. Dr. Hugh M. Smith, the Deputy Commissioner of the U.S. Bureau of Fisheries, was the Director of the Expedition. Other scientific participants were Frederick M. Chamberlain, Lewis Radcliffe, Paul Bartsch, Harry C. Fasset, Clarence Wells, Albert Burrows, Alvin Seale, and Roy Chapman Andrews. The expedition consisted of a series of cruises, each beginning and ending in Manila and exploring a different part of the island group. In addition to the Philippines proper, the ship also explored parts of the Dutch East Indies and areas around Hong Kong and Taiwan. The expedition returned great quantities of fish and invertebrate speciments as well as hydrographic and fisheries data; most of the material was eventually deposited in the Smithsonian Institution's National Museum of Natural History. The fisehs were formally accessioned into the museum in 1922 and fell under the car of Barton A. Bean, Assistant Curator of Fishes, who then recruited Henry W. Fowler to work up the material. Fowler completed his studies of the entire collection, but only part of it was ever published, due in part to the economic constraints caused by the Depression. The material from the Philippine Expedition constituted the largest single accession of fishes ever received by the museum. These speciments are in good condition today and are still being used in scientific research.
Resumo:
In the history of whaling from prehistoric to modern times, the large whales, sometimes called the “great whales,” were hunted most heavily owing in part to their corresponding value in oil, meat, and baleen. Regional populations of North Atlantic right whales, Eubalaena glacialis glacialis, were already decimated by 1700, and the North Atlantic gray whale, Eschrichtius robustus, was hunted to extinction by the early 1700’s (Mitchell and Mead1).
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): There were many similarities between the February 1986 storm and that of December 1964 and also December 1955. The 1964 storm hit hardest a little further north and the North Coast took the brunt of that storm. December 1955 also produced higher north coastal area runoff. December 1955 produced greater peaks in the central part of the state than the 1964 flood and is perhaps more comparable south of the Lake Tahoe-American River area. But the real surprise this time was the volume. Four reservoirs, Folsom, Black Butte, Pardee, and Comanche, were filled completely and became surcharged (storing more water than the designed capacity). The 10 day total rainfall amounted to half the normal annual totals at many precipitation stations. The February 1986 flood is a vivid reminder of the extremes of California climate and the value of the extensive system of flood control works in the state. Before the storm, especially in January, there was much concern about the dryness of the water year. Then with the deluge, California's flood control systems were tested. By and large the system worked preventing untold damage and misery for most dwellers in the flat lands.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Tree-ring chronologies, developed from cores from Pinyon pines growing on climatically sensitive sites in the north-central Great Basin, have been used to reconstruct precipitation and drought histories of the area from A.D. 1600 to 1982. Analysis of these hydrologic time series helps to place current climatic conditions into the perspective of the past 383 years (since 1600). ... The years 1934 and 1959 were the first and fourth driest while 1934 had the lowest July Palmer Drought Severity Index (PDSI) of the reconstructed records. Nevertheless, the decade of the 1930's is only the seventh driest since 1600; the decade 1953-1962 ranks as the second driest. The driest non-overlapping decade since 1600 was 1856-1865. Interestingly, the second wettest decade was 1932-1941. An examination of 30-year mean precipitation data shows that the driest 30-year period was 1871-1900; 1931-1960 ranks as the fourth driest. The current 30-year period (1951-1980) ranks twelfth.
Resumo:
This report argues for greatly increased resources in terms of data collection facilities and staff to collect, process, and analyze the data, and to communicate the results, in order for NMFS to fulfill its mandate to conserve and manage marine resources. In fact, the authors of this report had great difficulty defining the "ideal" situation to which fisheries stock assessments and management should aspire. One of the primary objectives of fisheries management is to develop sustainable harvest policies that minimize the risks of overfishing both target species and associated species. This can be achieved in a wide spectrum of ways, ranging between the following two extremes. The first is to implement only simple management measures with correspondingly simple assessment demands, which will usually mean setting fishing mortality targets at relatively low levels in order to reduce the risk of unknowingly overfishing or driving ecosystems towards undesirable system states. The second is to expand existing data collection and analysis programs to provide an adequate knowledge base that can support higher fishing mortality targets while still ensuring low risk to target and associated species and ecosystems. However, defining "adequate" is difficult, especially when scientists have not even identified all marine species, and information on catches, abundances, and life histories of many target species, and most associated species, is sparse. Increasing calls from the public, stakeholders, and the scientific community to implement ecosystem-based stock assessment and management make it even more difficult to define "adequate," especially when "ecosystem-based management" is itself not well-defined. In attempting to describe the data collection and assessment needs for the latter, the authors took a pragmatic approach, rather than trying to estimate the resources required to develop a knowledge base about the fine-scale detailed distributions, abundances, and associations of all marine species. Thus, the specified resource requirements will not meet the expectations of some stakeholders. In addition, the Stock Assessment Improvement Plan is designed to be complementary to other related plans, and therefore does not duplicate the resource requirements detailed in those plans, except as otherwise noted.
Resumo:
Sex-specific demography and reproductive biology of stripey bass (Lutjanus carponotatus) (also known as Spanish flag snapper, FAO) were examined at the Palm and Lizard island groups, Great Barrier Reef (GBR).Total mortality rates were similar between the sexes. Males had larger L∞ at both island groups and Lizard Island group fish had larger overall L∞. Female:male sex ratios were 1.3 and 1.1 at the Palm and Lizard island groups, respectively. The former is statistically different from 1, but is unlikely significantly different in a biological sense. Females matured on average at 2 years of age and 190 mm fork length at both locations. Female gonadal lipid body indices peaked from August through October, preceding peak gonadosomatic indices in October, November, and December that were twice as great as in any other month. However, ovarian staging revealed 50% or more ovaries were ripe from September through February, suggesting a more protracted spawning season and highlighting the different interpretations that can arise between gonad weight and gonad staging methods. Gonadosomatic index increases slightly with body size and larger fish have a longer average spawning season, which suggests that larger fish produce greater relative reproductive output. Lizard Island group females had ovaries nearly twice as large as Palm Island group females at a given body size. However, it is unclear whether this reflects spatial differences akin to those observed in growth or effects of sampling Lizard Island group fish closer to their date of spawning. These results support an existing 250 mm minimum size limit for L. carponotatus on the GBR, as well as the timing of a proposed October through December spawning closure for the fishery. The results also caution against assessing reef-fish stocks without reference to sex-, size-, and location-specific biological traits.