20 resultados para Genetic improvement


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Details are given of a framework for developing breeding programmes using experience from the Genetic Improvement of Farmed Tilapias project which focussed on Nile tilapias (Oreochromis niloticus ). The following aspects are outlined: Analysis of targeted production and marketing systems; Breeding goals; Systematic documentation and evaluation of available genetic resources and choice and genetic base; Number of strains; Breeding strategy; Selection criteria and evaluation; Production and dissemination of improved strains; and, social, economic and environmental impacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biochemical (electrophoresis and mitochondrial DNA) and morphological analysis are important tools for the characterization of strains. Reference is made to studies conducted in the framework of the Genetic Improvement of Farmed Tilapias project to establish a new base tilapia population for culture purposes, describing the basic concepts of electrophoresis and morphometric analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As compared to crops and livestock, the genetic enhancement of fish is in its infancy. While significant progress has been achieved in the genetic improvement of temperate fish such as salmonids, no efforts were made until the late 1980s for the genetic improvement of tropical finfish, which account for about 90 percent of global aquaculture production. This paper traces the history of the Genetic Improvement of Farmed Tilapia (GIFT) project initiated in 1988 by the WorldFish Center and its partners for the development of methods for genetic enhancement of tropical finfish using Nile tilapia (Oreochromis niloticus) as a test species. It also describes the impacts of the project on the adoption of these methods for other species and the dissemination of improved breeds in several countries in Asia and the Pacific.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present livestock breeding developments that could be taken into consideration in the genetic improvement of farmed aquaculture species, especially in freshwater fish. Firstly, the current breeding objective in aquatic species has focused almost exclusively on the improvement of body weight at harvest or on growth related traits. This is unlikely to be sufficient to meet the future needs of the aquaculture industry. To meet future demands breeding programs will most likely have to include additional traits, such as fitness related ones (survival, disease resistance), feed efficiency, or flesh quality, rather than only growth performance. In order to select for a multi-trait breeding objective, genetic variation in traits of interest and the genetic relationships among them need to be estimated. In addition, economic values for these traits will be required. Generally, there is a paucity of data on variable and fixed production costs in aquaculture, and this could be a major constraint in the further expansion of the breeding objectives. Secondly, genetic evaluation systems using the restricted maximum likelihood method (REML) and best linear unbiased prediction (BLUP) in a framework of mixed model methodology could be widely adopted to replace the more commonly used method of mass selection based on phenotypic performance. The BLUP method increases the accuracy of selection and also allows the management of inbreeding and estimation of genetic trends. BLUP is an improvement over the classic selection index approach, which was used in the success story of the genetically improved farmed tilapia (GIFT) in the Philippines, with genetic gains from 10 to 20 per cent per generation of selection. In parallel with BLUP, optimal genetic contribution theory can be applied to maximize genetic gain while constraining inbreeding in the long run in selection programs. Thirdly, by using advanced statistical methods, genetic selection can be carried out not only at the nucleus level but also in lower tiers of the pyramid breeding structure. Large scale across population genetic evaluation through genetic connectedness using cryopreserved sperm enables the comparison and ranking of genetic merit of all animals across populations, countries or years, and thus the genetically superior brood stock can be identified and widely used and exchanged to increase the rate of genetic progress in the population as a whole. It is concluded that sound genetic programs need to be established for aquaculture species. In addition to being very effective, fully pedigreed breeding programs would also enable the exploration of possibilities of integrating molecular markers (e.g., genetic tagging using DNA fingerprinting, marker (gene) assisted selection) and reproductive technologies such as in-vitro fertilization using cryopreserved spermatozoa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been predicted that the global demand for fish for human consumption will increase by more than 50% over the next 15 years. The FAO has projected that the increase in supply will originate primarily from marine fisheries, aquaculture and to a lesser extent from inland fisheries, but with a commensurate price increase. However, there are constraints to increased production in both marine and inland fisheries, such as overfishing, overexploitation limited potential increase and environmental degradation due to industrialization. The author sees aquaculture as having the greatest potential for future expansion. Aquaculture practices vary depending on culture, environment, society amd sources of fish. Inputs are generally low-cost, ecologically efficient and the majority of aquaculture ventures are small-scale and family operated. In the future, advances in technology, genetic improvement of cultured species, improvement in nutrition, disease management, reproduction control and environmental management are expected along with opportunities for complimentary activities with agriculture, industrial and wastewater linkages. The main constraints to aquaculture are from reduced access to suitable land and good quality water due to pollution and habitat degradation. Aquaculture itself carries minimal potential for aquatic pollution. State participation in fisheries production has not proven to be the best way to promote the fisheries sector. The role of governments is increasingly seen as creating an environment for economic sectors to make an optimum contribution, through support in areas such as infrastructure, research, training and extension and a legal framework. The author feels that a holistic approach integrating the natural and social sciences is called for when fisheries policy is being examined.