59 resultados para Eutrophication.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vancouver Lake, located adjacent to the Columbia River and just north of the Vancouver-Portland metropolitan area, is a "dying" lake. Although all lakes die naturally in geologic time through the process of eutrophication,* Vancouver Lake is dying more rapidly due to man's activities and due to the resultant increased accumulation of sediment, chemicals, and wastes. Natural eutrophication takes thousands of years, whereas man-made modifications can cause the death of a lake in decades. Vancouver Lake does, however, have the potential of becoming a valuable water resource asset for the area, due particularly to its location near the Columbia River which can be used as a source of "flushing" water to improve the quality of Vancouver Lake. (Document pdf contains 59 pages) Community interest in Vancouver Lake has waxed and waned. Prior to World War II, there were relatively few plans for discussions about the Lake and its surrounding land area. A plan to drain the Lake for farming was prohibited by the city council and county commissioners. Interest increased in 1945 when the federal government considered developing the Lake as a berthing harbor for deactivated ships at which time a preliminary proposal was prepared by the City. The only surface water connection between Vancouver Lake and the Columbia River, except during floods, is Lake River. The Lake now serves as a receiving body of water for Lake River tidal flow and surface flow from creeks and nearby land areas. Seasonally, these flows are heavily laden with sediment, septic tank drainage, fertilizers and drainage from cattle yards. Construction and gravel pit operations increase the sediment loads entering the Lake from Burnt Bridge Creek and Salmon Creek (via Lake River by tidal action). The tidal flats at the north end of Vancouver Lake are evidence of this accumulation. Since 1945, the buildup of sediment and nutrients created by man's activities has accelerated the growth of the large water plants and algae which contribute to the degeneration of the Lake. Flooding from the Columbia River, as in 1968, has added to the deposition in Vancouver Lake. The combined effect of these human and natural activities has changed Vancouver Lake into a relatively useless body of shallow water supporting some wildlife, rough fish, and shallow draft boats. It is still pleasant to view from the hills to the east. Because precipitation and streamflow are the lowest during the summer and early fall, water quantity and quality conditions are at their worst when the potential of the Lake for water-based recreation is the highest. Increased pollution of the Lake has caused a larger segment of the community to become concerned. Land use and planning studies were undertaken on the Columbia River lowlands and a wide variety of ideas were proposed for improving the quality of the water-land environment in order to enhance the usefulness of the area. In 1966, the College of Engineering Research Division at Washington State University (WSU0 in Pullman, Washington, was contacted by the Port of Vancouver to determine possible alternatives for restoring Vancouver Lake. Various proposals were prepared between 1966 and 1969. During the summer and fall of 1967, a study was made by WSU on the existing water quality in the Lake. In 1969, the current studies were funded to establish a data base for considering a broad range of alternative solutions for improving the quantity and quality of Vancouver Lake. Until these studies were undertaken, practically no data on a continuous nature were available on Vancouver Lake, Lake River, or their tributaries. (Document pdf contains 59 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is strong evidence to suggest that ground-water nitrate concentrations have increased in recent years and further increases are expected along portions of the central Gulf coast of Florida. Much of the nitrate enriched groundwater is discharged into surface waters through numerous freshwater springs that are characteristic of the area and the potential for eutrophication of their receiving waters is a legitimate concern. To test the potential effects of elevated nutrient concentrations on the periphyton community an in situ nutrient addition experiment was conducted in the spring-fed Chassahowitzka River, FL, USA, during the summer of 1999. Plastic tubes housing arrays of glass microscope slides were suspended in the stream. Periphyton colonizing the microscope slides was subjected to artificial increases in nitrogen, phosphorus or a combination of both. Slides from each tube were collected at 3- to 4- day intervals and the periphyton communities were measured for chlorophyll concentration. The addition of approximately 10 μg/L of phosphate above ambient concentrations significantly increased the amount of periphyton on artificial substrates relative to controls; the addition of approximately 100 μg/L of nitrate above ambient concentrations did not. The findings from this experiment implicated phosphorus, rather than nitrogen, as the nutrient that potentially limits periphyton growth in this system.(PDF contains 4 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water chestnut (Trapa natans L.,sensu lato) is an annual, floating-leaved aquatic plant of temperate and tropical freshwater wetlands, rivers, lakes, ponds, and estuaries. Native to Eurasia and Africa, water chestnut has been widely gathered for its large nutritious seed since the Neolithic and is cultivated for food in Asia. Water chestnut is now a species of conservation concern in Europe and Russia. Introduced to the northeastern United States in the mid-1800s, the spread of water chestnut as a nuisance weed was apparently favored by cultural eutrophication. Water chestnut is considered a pest in the U.S. because it forms extensive, dense beds in lakes, rivers, and freshwater-tidal habitats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hawkesbury-Nepean River in New South Wales (NSW), Australia, is the largest river system in the Sydney metropolitan area, and it drains most of the developing areas to the west. This catchment is under increasing pressure from urban expansion and the river frequently experiences extended periods of low flows due to a combination of extensive river regulation and the Australian temperate climate. Added to this, the river and several of its tributaries receive treated sewage and stormwater from various sources. Habitats and biota within the Hawkesbury-Nepean River catchment have been altered since European settlement and many introduced species have spread throughout the terrestrial and aquatic environment (Recher et al. 1993). Submersed macrophyte assemblages within the river have undergone significant changes in their distribution and abundance due to eutrophication, habitat alteration and changes to river flows (Recher et al 1993). Anecdotal evidence and some early unpublished studies suggest that egeria (Egeria densa Planchon), introduced from South America as an aquarium plant, was present in the Hawkesbury-Nepean River prior to 1980. Sainty (1973) reported a persistent and troublesome infestation over a number of years at Wallacia in the upper Nepean River. Here, as part of a larger study on the ecology of macrophyte and invertebrate assemblages associated with anthropogenic disturbance in the Hawkesbury-Nepean River, we document the rapid spread of egeria since 1994. Significant increases in egeria biomass were also found, and we present preliminary evidence which suggest that the native ribbonweed, vallisneria (Vallisneria americana Michx.) is being displaced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several long-term monitoring studies describing the water quality and biological condition of Southeastern estuaries (National Estuarine Eutrophication Assessment Project, South Carolina Estuarine and Coastal Assessment Program (SCECAP), Environmental Monitoring and Assessment Program (EMAP), South Carolina Harmful Algal Bloom Program (SCHAB), South Carolina Tidal Creek Project, and others) have been developed. Many of the same water quality issues determined for open estuaries are also found in coastal stormwater ponds, and there are important interactions between the man-made ponds and the natural systems. Researchers have highlighted problems such as nutrient eutrophication, bacterial and chemical contamination, hypoxia, and harmful algal blooms (HABs). This technical memorandum summarizes the state-of-the-knowledge of water quality indicators (dissolved oxygen, nutrients, and chlorophyll a), and harmful algae in Southeastern coastal stormwater ponds. (PDF contains 31 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Executive Summary: The western National Coastal Assessment (NCA-West) program of EPA, in conjunction with the NOAA National Ocean Service (NOS), conducted an assessment of the status of ecological condition of soft sediment habitats and overlying waters along the western U.S. continental shelf, between the target depths of 30 and 120 m, during June 2003. NCA-West and NOAA/NOS partnered with the West Coast states (Washington (WA), Oregon (OR), and California (CA)), and the Southern California Coastal Water Research Project (SCCWRP) Bight ’03 program to conduct the survey. A total of 257 stations were sampled from Cape Flattery, WA to the Mexican border using standard methods and indicators applied in previous coastal NCA projects. A key study feature was the incorporation of a stratified-random sampling design with stations stratified by state and National Marine Sanctuary (NMS) status. Each of the three states was represented by at least 50 random stations. There also were a total of 84 random stations located within NOAA’s five NMSs along the West Coast including the Olympic Coast NMS (OCNMS), Cordell Bank NMS (CBNMS), Gulf of Farallones NMS (GFNMS), Monterey Bay NMS (MBNMS), and Channel Islands NMS (CINMS). Collection of flatfish via hook-and-line for fish-tissue contaminant analysis was successful at 50 EMAP/NCA-West stations. Through a collaboration developed with the FRAM Division of the Northwest Fisheries Science Center, fish from an additional 63 stations in the same region and depth range were also analyzed for fish-tissue contaminants. Bottom depth throughout the region ranged from 28 m to 125 m for most stations. Two slightly deeper stations from the Southern California Bight (SCB) (131, 134 m) were included in the data set. About 44% of the survey area had sediments composed of sands (< 20% silt-clay), about 47% was composed of intermediate muddy sands (20-80% silt-clay), and about 9% was composed of muds (> 80% silt-clay). The majority of the survey area (97%) had relatively low percent total organic carbon (TOC) levels of < 2%, while a small portion (< 1%) had high TOC levels (> 5%), in a range potentially harmful to benthic fauna. Salinity of surface waters for 92% of the survey area were > 31 psu, with most stations < 31 psu associated with the Columbia River plume. Bottom salinities ranged only between 31.6 and 34.4 psu. There was virtually no difference in mean bottom salinities among states or between NMS and non-NMS stations. Temperatures of surface water (range 8.5 -19.9 °C) and bottom water (range 5.8 -14.7 °C) averaged several degrees higher in CA in comparison to WA and OR. The Δσt index of watercolumn stratification indicated that about 31% of the survey area had strong vertical stratification of the water column. The index was greatest for waters off WA and lowest for CA waters. Only about 2.6 % of the survey area had surface dissolved oxygen (DO) concentrations ≤ 4.8 mg/L, and there were no values below the lower threshold (2.3 mg/L) considered harmful to the survival and growth of marine animals. Surface DO concentrations were higher in WA and OR waters than in CA, and higher in the OC NMS than in the CA sanctuaries. An estimated 94.3% of the area had bottom-water DO concentrations ≤ 4.8 mg/L and 6.6% had concentrations ≤ 2.3 mg/L. The high prevalence of DO from 2.3 to 4.8 mg/L (85% of survey area) is believed to be associated with the upwelling of naturally low DO water across the West Coast shelf. Mean TSS and transmissivity in surface waters (excluding OR due to sample problems) were slightly higher and lower, respectively, for stations in WA than for those in CA. There was little difference in mean TSS or transmissivity between NMS and non-NMS locations. Mean transmissivity in bottom waters, though higher in comparison to surface waters, showed little difference among geographic regions or between NMS and non-NMS locations. Concentrations of nitrate + nitrite, ammonium, total dissolved inorganic nitrogen (DIN) and orthophosphate (P) in surface waters tended to be highest in CA compared to WA and OR, and higher in the CA NMS stations compared to CA non-sanctuary stations. Measurements of silicate in surface waters were limited to WA and CA (exclusive of the SCB) and showed that concentrations were similar between the two states and approximately twice as high in CA sanctuaries compared to OCNMS or nonsanctuary locations in either state. The elevated nutrient concentrations observed at CA NMS stations are consistent with the presence of strong upwelling at these sites at the time of sampling. Approximately 93% of the area had DIN/P values ≤ 16, indicative of nitrogen limitation. Mean DIN/P ratios were similar among the three states, although the mean for the OCNMS was less than half that of the CA sanctuaries or nonsanctuary locations. Concentrations of chlorophyll a in surface waters ranged from 0 to 28 μg L-1, with 50% of the area having values < 3.9 μg L-1 and 10% having values > 14.5 μg L-1. The mean concentration of chlorophyll a for CA was less than half that of WA and OR locations, and concentrations were lowest in non-sanctuary sites in CA and highest at the OCNMS. Shelf sediments throughout the survey area were relatively uncontaminated with the exception of a group of stations within the SCB. Overall, about 99% of the total survey area was rated in good condition (<5 chemicals measured above corresponding effect range low (ERL) concentrations). Only the pesticides 4,4′-DDE and total DDT exceeded corresponding effect range-median (ERM) values, all at stations in CA near Los Angeles. Ten other contaminants including seven metals (As, Cd, Cr, Cu, Hg, Ag, Zn), 2-methylnaphthalene, low molecular weight PAHs, and total PCBs exceeded corresponding ERLs. The most prevalent in terms of area were chromium (31%), arsenic (8%), 2-methylnaphthalene (6%), cadmium (5%), and mercury (4%). The chromium contamination may be related to natural background sources common to the region. The 2-methylnaphthalene exceedances were conspicuously grouped around the CINMS. The mercury exceedances were all at non-sanctuary sites in CA, particularly in the Los Angeles area. Concentrations of cadmium in fish tissues exceeded the lower end of EPA’s non-cancer, human-health-risk range at nine of 50 EMAP/NCA-West and nine of 60 FRAM groundfish-survey stations, including a total of seven NMS stations in CA and two in the OCNMS. The human-health guidelines for all other contaminants were only exceeded for total PCBs at one station located in WA near the mouth of the Columbia River. Benthic species richness was relatively high in these offshore assemblages, ranging from 19 to 190 taxa per 0.1-m2 grab and averaging 79 taxa/grab. The high species richness was reflected over large areas of the shelf and was nearly three times greater than levels observed in estuarine samples along the West Coast (e.g NCA-West estuarine mean of 26 taxa/grab). Mean species richness was highest off CA (94 taxa/grab) and lower in OR and WA (55 and 56 taxa/grab, respectively). Mean species richness was very similar between sanctuary vs. non-sanctuary stations for both the CA and OR/WA regions. Mean diversity index H′ was highest in CA (5.36) and lowest in WA (4.27). There were no major differences in mean H′ between sanctuary vs. nonsanctuary stations for both the CA and OR/WA regions. A total of 1,482 taxa (1,108 to species) and 99,135 individuals were identified region-wide. Polychaetes, crustaceans and molluscs were the dominant taxa, both by percent abundance (59%, 17%, 12% respectively) and percent species (44%, 25%, 17%, respectively). There were no major differences in the percent composition of benthic communities among states or between NMSs and corresponding non-sanctuary sites. Densities averaged 3,788 m-2, about 30% of the average density for West Coast estuaries. Mean density of benthic fauna in the present offshore survey, averaged by state, was highest in CA (4,351 m-2) and lowest in OR (2,310 m-2). Mean densities were slightly higher at NMS stations vs. non-sanctuary stations for both the CA and OR/WA regions. The 10 most abundant taxa were the polychaetes Mediomastus spp., Magelona longicornis, Spiophanes berkeleyorum, Spiophanes bombyx, Spiophanes duplex, and Prionospio jubata; the bivalve Axinopsida serricata, the ophiuroid Amphiodia urtica, the decapod Pinnixa occidentalis, and the ostracod Euphilomedes carcharodonta. Mediomastus spp. and A. serricata were the two most abundant taxa overall. Although many of these taxa have broad geographic distributions throughout the region, the same species were not ranked among the 10 most abundant taxa consistently across states. The closest similarities among states were between OR and WA. At least half of the 10 most abundant taxa in NMSs were also dominant in corresponding nonsanctuary waters. Many of the abundant benthic species have wide latitudinal distributions along the West Coast shelf, with some species ranging from southern CA into the Gulf of Alaska or even the Aleutians. Of the 39 taxa on the list of 50 most abundant taxa that could be identified to species level, 85% have been reported at least once from estuaries of CA, OR, or WA exclusive of Puget Sound. Such broad latitudinal and estuarine distributions are suggestive of wide habitat tolerances. Thirteen (1.2%) of the 1,108 identified species are nonindigenous, with another 121 species classified as cryptogenic (of uncertain origin), and 208 species unclassified with respect to potential invasiveness. Despite uncertainties of classification, the number and densities of nonindigenous species appear to be much lower on the shelf than in the estuarine ecosystems of the Pacific Coast. Spionid polychaetes and the ampharetid polychaete Anobothrus gracilis were a major component of the nonindigenous species collected on the shelf. NOAA’s five NMSs along the West Coast of the U.S. appeared to be in good ecological condition, based on the measured indicators, with no evidence of major anthropogenic impacts or unusual environmental qualities compared to nearby nonsanctuary waters. Benthic communities in sanctuaries resembled those in corresponding non-sanctuary waters, with similarly high levels of species richness and diversity and low incidence of nonindigenous species. Most oceanographic features were also similar between sanctuary and non-sanctuary locations. Exceptions (e.g., higher concentrations of some nutrients in sanctuaries along the CA coast) appeared to be attributable to natural upwelling events in the area at the time of sampling. In addition, sediments within the sanctuaries were relatively uncontaminated, with none of the samples having any measured chemical in excess of ERM values. The ERL value for chromium was exceeded in sediments at the OCNMS, but at a much lower percentage of stations (four of 30) compared to WA and OR non-sanctuary areas (31 of 70 stations). ERL values were exceeded for arsenic, cadmium, chromium, 2- methylnaphthalene, low molecular weight PAHs, total DDT, and 4,4′-DDE at multiple sites within the CINMS. However, cases where total DDT, 4,4′-DDE, and chromium exceeded the ERL values were notably less prevalent at CINMS than in non-sanctuary waters of CA. In contrast, 2-methylnaphthalene above the ERL was much more prevalent in sediments at the CINMS compared to non-sanctuary waters off the coast of CA. While there are natural background sources of PAHs from oil seeps throughout the SCB, this does not explain the higher incidence of 2-methylnaphthalene contamination around CINMS. Two stations in CINMS also had levels of TOC (> 5%) potentially harmful to benthic fauna, though none of these sites exhibited symptoms of impaired benthic condition. This study showed no major evidence of extensive biological impacts linked to measured stressors. There were only two stations, both in CA, where low numbers of benthic species, diversity, or total faunal abundance co-occurred with high sediment contamination or low DO in bottom water. Such general lack of concordance suggests that these offshore waters are currently in good condition, with the lower-end values of the various biological attributes representing parts of a normal reference range controlled by natural factors. Results of multiple linear regression, performed using full model procedures to test for effects of combined abiotic environmental factors, suggested that latitude and depth had significant influences on benthic variables regionwide. Latitude had a significant inverse influence on all three of the above benthic variables, i.e. with values increasing as latitude decreased (p< 0.01), while depth had a significant direct influence on diversity (p < 0.001) and inverse effect on density (p <0.01). None of these variables varied significantly in relation to sediment % fines (at p< 0.1), although in general there was a tendency for muddier sediments (higher % fines) to have lower species richness and diversity and higher densities than coarser sediments. Alternatively, it is possible that for some of these sites the lower values of benthic variables reflect symptoms of disturbance induced by other unmeasured stressors. The indicators in this study included measures of stressors (e.g., chemical contaminants, eutrophication) that are often associated with adverse biological impacts in shallower estuarine and inland ecosystems. However, there may be other sources of humaninduced stress in these offshore systems (e.g., bottom trawling) that pose greater risks to ambient living resources and which have not been captured. Future monitoring efforts in these offshore areas should include indicators of such alternative sources of disturbance. (137pp.) (PDF contains 167 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence of blue-green algal blooms and surface scum-formation are certainly not new phenomena. Many British and European authors have been faithfully describing the unmistakable symptoms of blue-green algal scums for over 800 years. There is no disputing that blue-green algal toxins are extremely harmful. Three quite separate categories of compound have been separated: neurotoxins; hepatotoxins and lipopolysaccharides. There is a popular association between blue-green algae and eutrophication. Certainly the main nuisance species - of Microcystis, Anabaena and Aphanizomenon are rare in oligotrophic lakes and reservoirs. Several approaches have been proposed for the control of blue-green algae. Distinction is made between methods for discharging algae already present (eg algicides; straw bales; viruses; parasitic fungi and herbivorous ciliates), and methods for averting an anticipated abundance in the future (phosphorous control, artificial circulation etc).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arctic charr of the British Isles are all non-migratory and are near their most southernmost range. Windermere is one of the few lowland lakes at southerly latitudes to contain a substantial proportion of Arctic charr. The first recorded mention of charr in Windermere was made around 1540 but it was not till the 17th century that different "sons" of charr were recognized, based on differences in their breeding behaviour. In the 1960's, the presence of two distinct populations, autumn spawners and spring spawners were discovered. In the 1980's it was shown that there were at least four races of charr in Windermere, based on genetic characteristics. Recently, the lake has changed due to inputs of phosphorus from treated sewage released into the lake resulting in eutrophication particularly in the south basin. Since the mid-1980's the numbers of charr caught in the south basin have declined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eutrophication of fresh waters through anthropogenic enrichment by phosphorus is a global problem. The role of phosphorus enrichment in the formation of blooms of toxic blue-green algae (Cyanobacteria) in fresh waters is well established and of considerable concern in terms of human and animal health, loss of water resources and amenities, threats to fish stocks, and aesthetic considerations. Cultural eutrophication also poses threats to the ecosystem balance in fresh waters, with implications for wildlife. This article examines phosphorus enrichment in fresh waters from a systems perspective, and explores systems solutions that may be helpful in the development of more sustainable policies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The best evidence for establishing the level of eutrophy of a water-body is its algal production which makes it possible to identify the type and the intensity of the eutrophication according to the kind and number of algal species present: when the number of algae exceeds half a million per litre then one speaks o an ”algal bloom”. The scope of the present research aims to verify if the alga Selenastrum capricornutum can be used as a test alga under our culture conditions and to determine the eutrophic level of the secondary effluent of a modern plant for the treatment of domestic discharge and to investigate the eventual ”limiting factors”. Finally this paper aims to study the effect on the secondary effluent of tertiary treatment carried out artificially in the laboratory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes some characteristic features of the phytoplankton of Grasmere, one of the smaller of the principal lakes of the English Lake District, and attempts to relate these to distinctive physical and chemical properties of the lake. Quantitative data presented herein are derived from 5-m vertical column samples, collected with a flexible polyethylene hose close to the deepest point of Grasmere, generally at intervals of 14 days ( 7 days from 1972 to 1978, inclusive). The study concludes that although Grasmere has been subject to increased phosphorus-loading and has quickly developed many features associated with eutrophication, the composition of its plankton has retained the characteristics of a mesotrophic, soft-water lake: a vernal diatom maximum, generally dominated by Asterionella, is followed by summer growths of nanoplanktonic species, of various colonial Chlorophyceae, before a substantial return to Asterionella-dominance in the autumn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This short interim progress report builds on previous progress reports which have described the quantification of the process both within and between lakes of different degrees of eutrophication. These data indicated that slight changes in methodology, particularly when investigating sediment deposits, could grossly affect the measured activity. The aim of the present research was an attempt to rationalize these differences. If this could be achieved it would enable meaningful interpretation of published data obtained using different methods and therefore enlarge the available database. In addition some observations have been made on the production of nitrite by Grasmere profundal sediment slurries sampled during the circulation period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current situation of regional, rather' than national, problems of eutrophication in standing waters has been widely aired in recent reports. A reliable, quantitative data base is a prerequisite to future trend monitoring, a concensus view of those reports. The objective of this report is to establish requirements, methodology and a minimal data set for nutrient and algae status in water supply reservoirs in England which may be used as a protocol for future trend monitoring.A pilot study has been carried out to assess the relative merits of different sampling strategies, the choice of which has major implications for the cost of sample collection. This short report suggests that consider the possibility of designating a few sites as ”baseline sites” at which detailed changes in trophic status as monitored by the more labour-intensive parameters would be collected on a regular, long term basis to help in the interpretation of the low cost survey results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in management practices and agricultural productivity over the past twenty years have lead to nitrate pollution and eutrophication of lakes and rivers. Information on nitrate concentrations and discharge has been collected on the River Frome at East Stoke since 1965, using the same analytical nitrate method so that the results are comparable. These records of weekly spot values of nitrate concentration and daily mean discharges have been analysed for trends and seasonal patterns in both concentration and nitrate loadings. In this extension of our nitrate contract, a new automated method of intensive sampling has been used to monitor short-term variability and to assess how well similar routine (weekly) sampling schemes can represent the true nitrate record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixing and transport processes in surface waters strongly influence the structure of aquatic ecosystems. The impact of mixing on algal growth is species-dependent, affecting the competition among species and acting as a selective factor for the composition of the biocoenose. Were it not for the ever-changing ”aquatic weather”, the composition of pelagic ecosystems would be relatively simple. Probably just a few optimally adapted algal species would survive in a given water-body. In contrast to terrestrial ecosystems, in which the spatial heterogeneity is primarily responsible for the abundance of niches, in aquatic systems (especially in the pelagic zone) the niches are provided by the temporal structure of physical processes. The latter are discussed in terms of the relative sizes of physical versus biological time-scales. The relevant time-scales of mixing and transport cover the range between seconds and years. Correspondingly, their influence on growth of algae is based on different mechanisms: rapid changes are relevant for the fast biological processes such as nutrient uptake and photosynthesis, and the slower changes are relevant for the less dynamic processes such as growth, respiration, mineralization, and settling of algal cells. Mixing time-scales are combined with a dynamic model of photosynthesis to demonstrate their influence on algal growth.