84 resultados para Dried eggs
Resumo:
Brown trout (Salmo trutta) in Teesdale lay their eggs in the streambed gravels in the Autumn, here the eggs slowly develop to emerge as young fry in the Spring. Whilst the eggs are in the gravel they are vulnerable to displacement by high water velocities. Eggs removed in this way are not thought to remain viable since they are very susceptible to death through physical shock - especially in the earlier stages of development. Streams in Teesdale are known to be amongst the most flashy in England and thus are good sites in which to study egg washout. Three field sites were used for the study of egg washout in Teesdale - Great Eggleshope, Thorsgill and Carl becks. This report describes preliminary studies of a varied nature into this subject from which an attempt is made to assess the importance of egg washout to the survival of brown trout in Teesdale.
Resumo:
When salmonid redds are disrupted by spates, the displaced eggs will drift downstream. The mean distance of travel, the types of locations in which the eggs resettle and the depth of reburial of displaced eggs are not known. Investigation of these topics under field conditions presents considerable practical problems, though the use of artificial eggs might help to overcome some of them. Attempts to assess the similarities and/or differences in performance between real and artificial eggs are essential before artificial eggs can validly be used to simulate real eggs. The present report first compares the two types of egg in terms of their measurable physical characteristics (e.g. dimensions and density). The rate at which eggs fall in still water will relate to the rate at which they are likely to resettle in flowing water in the field. As the rate of fall will be influenced by a number of additional factors (e.g. shape and surface texture) which are not easily measured directly, the rates of fall of the two types of egg have been compared directly under controlled conditions. Finally, comparisons of the pattern of settlement of the two types of egg in flowing water in an experimental channel have been made. Although the work was primarily aimed at testing the value of artificial eggs as a simulation of real eggs, several side issues more directly concerned with the properties of real eggs and the likely distance of drift in natural streams have also been explored. This is the first of three reports made on this topic by the author in 1984.
Resumo:
At high stream discharges salmonid eggs can he displaced from the gravel and may drift downstream. It has been suggested that developing salmonid eggs may be killed by ”physical shock”, especially during the period before ”eyeing”. Similarly, a progress report by the International Pacific Salmon Fisheries Commission (1966) states that salmonid eggs are most sensitive during the period between fertilisation and blastopore closure. However, it would seem unlikely that this sensitivity actually begins at the time of fertilisation because, in nature, a period, perhaps measured in hours, must occur during which the newly-fertilised eggs are exposed to physical shock during the deposition of gravel over them as a result of the cutting activity of the female fish. The present report describes simple channel experiments designed to answer the two questions: 1. After release of eggs from the gravel, does the process of drifting downstream, which implies some physical shock through movement and impact, decrease the survival of salmonid eggs? 2. Is the survival rate-influenced by the stage of development of the eggs?
Resumo:
It is of value to know the approximate distance of travel at different stream discharges and/or water velocities, of salmonid eggs which have been displaced from redds by spates. This report describes studies in 20 m of stream channel upstream of the fish trap in Dubby Sike. Observations were made on the relation- ships between discharge and water depth and velocity and also on the relationships between water velocity and the settlement of artificial trout eggs. The main aim was to test the hypothesis that, at any given water velocity, eggs would drift smaller distances in a natural stream than in the experimental channels.
Resumo:
Information on fecundity, oviposition behaviour, egg hatching, and parthenogenetic development of Ephemeroptera is reviewed and summarized.
Resumo:
Sampling was concentrated on the North Moor region and the series of ditches which drained this area to the Bristol Channel. Although most ditches were not deep the mud substratum precluded sampling from within the habitat. All samples were taken with a pond net from the banks. Efforts were made to sample each part of the habitat although in some ditches the macrophyte growth was so intense as to make sampling difficult particularly of the sediments. Organisms were identified on the 10 sampling sites.
Resumo:
The paper reviews the methodology of attempts to assess the importance of washout as a cause of loss of salmonid eggs and alevins. The results of this study are presented of various small-scale field trials using buried artificial salmonid eggs and tethered table tennis balls. The results suggested that, even when few eggs were actually lost by washout, some downstream movement of the upper layers of gravel and of artificial eggs might have taken place.
Resumo:
It is generally accepted by fish culturists that salmonid eggs are sensitive to mechanical shock and that the sensitivity varies with the stage of development of the eggs. In general, the period of greatest sensitivity is thought to occur between fertilization and ”eyeing”. However, it is reasonable to expect that, during a period (perhaps of several hours) following fertilization, sensitivity will be low because in nature during this period the eggs may be subject to some mechanical shock caused by the parent fish covering them with gravel. In 1983-4 and 1984-5 experiments were performed on brown trout (Salmo trutta L.) eggs to examine the effect of a standard mechanical shock (c. 2,500 eggs in 1983-4 and c. 8,400 eggs in 1984-5) at various stages of development upon survival to hatching and time of hatching.The results of these experiments are reported in this study.
Resumo:
The aim of this study was to develop a short-term genotoxicity assay for monitoring the marine environment for mutagens. Based on the developing eggs and embryos of the marine mussel Mytilus edulis, an important pollution indicator species, the test employs the sensitive sister chromatid exchange (SCE) technique as its end-point, and exploits the potential of mussel eggs to accumulate mutagenic pollutants from the surrounding sea water. Mussel eggs take up to 6 months to develop while in the gonad, which provides scope for DNA damage to be accumulated over an extended time interval; chromosome damage is subsequently visualised as SCEs in 2-cell-stage embryos after these have been spawned in the laboratory. Methods which measure biological responses to pollutant exposure are able to integrate all the factors (internal and external) which contribute to the exposure. The new cytogenetic assay allows the effects of adult exposure to be interpreted in cells destined to become part of the next generation.
Comparative evaluation of the proximate composition of smoked and salted-dried Oreochromis niloticus
Resumo:
This study was carried out to evaluate and compare the shelf life of smoked and salted-dried Oreochromis niloticus over a relative time period. Improved traditional smoking kiln and salting were employed respectively. The smoking kiln was constructed with iron metal with a dimension of 120cm x 70cm and consisting of three smoking racks with dimension of 30 x 30cm each. Table salt was used for preservation of some of the specimens. A total of 30 samples weighing 7.1kg were used. Fifteen (15) samples each were used respectively for smoking and salting. Satisfactory smoking was achieved in two days while salting to dryness was accomplished in four days. The initial percentage proximate compositions of the smoked products were 7.94%, 66. 97%, 8.`84% and 2.96% for moisture, protein, lipid and ash respectively, while that of the salted products were 8.37%, 63.93%, 12.91% and 3.95% for moisture, protein, lipid and ash. Preliminary results of the proximate compositions of the two products at the end of the fifth week of storage were as follows; 8.23%, 65.70%, 10.63% and 2.23% for moisture, protein, lipid and ash respectively of the smoked products, while 6.33%, 64.25%, 11.28% and 2.38% represent the values of moisture, protein, lipid and ash of the salted-dried products. By the individual product proximate characterization, it was discovered that both products were still relatively in good and acceptable condition. However, the protein and moisture values of the smoked products were relatively greater than those of the salted-dried products, while on the other hand, lipid and ash were relatively greater in salted-dried products. The prevailed relative higher moisture in the smoked products constitutes a predisposing condition for microbial activity and spoilage of the products, while the relative higher percentage lipid in the salted-dried products predisposes the products to lipid oxidation and rancidity.
Resumo:
The stage-specific distribution of Alaska plaice (Pleuronectes quadrituberculatus) eggs in the southeastern Bering Sea was examined with collections made in mid-May in 2002, 2003, 2005, and 2006. Eggs in the early stages of development were found primarily offshore of the 40-m isobath. Eggs in the middle and late stages of development were found inshore and offshore of the 40-m isobath. There was some evidence that early-stage eggs occur deeper in the water column than late-stage eggs, although year-to-year variability in that trend was observed. Most eggs were in the later stages of development; therefore the majority of spawning is estimated to have occurred a few weeks before collection—probably April—and may be highly synchronized among local spawning areas. Results indicate that sampling with continuous underway fish egg collectors(CUFES) should be supplemented with sampling of the entire water column to ensure adequate samples of all egg stages of Alaska plaice. Data presented offer new information on the stage-dependent horizontal and vertical distribution of Alaska plaice eggs in the Bering Sea and provide further evidence that the early life history stages of this species are vulnerable to near-surface variations in hydrographical conditions and climate forcing.
Resumo:
Skates (family Rajidae) are oviparous and lay tough, thick-walled eggs. At least some skate species lay their eggs in spatially restricted nursery grounds where embryos develop and hatch (Hitz, 1964; Hoff, 2007). After hatching, neonates may quickly leave the nursery grounds (Hoff, 2007). Egg densities in these small areas may be quite high. As an example, in the eastern Bering Sea, a site <2 km2 harbored eggs of Alaska skate (Bathyraja parmifera) exceeding 500,000/km2. All skate nursery grounds have been identified over soft sea floors (Lucifora and García, 2004; Hoff, 2007).
Resumo:
The number of pelagic fish eggs (cod and cunner) found in stomachs of capelin (Mallotus villosus) sampled in coastal Newfoundland was used to estimate the encounter rates between capelin and prey, and thus the effective volume swept by capelin. Fish eggs were found in 4−8% of capelin stomachs, represented an average of 1% of prey by numbers, and their abundance increased as relative stomach fullness decreased. The average number of eggs per stomach doubled for each 5-cm increase in length of capelin. The effective volume swept for eggs by capelin ranged from 0.04 to 0.84 m3/h—a rate that implies either very slow capelin swimming speeds (<1 cm/s) or that fish eggs are not strongly selected as prey. The predation rate estimated from stomach contents was higher than that predicted from laboratory studies of feeding pelagic fish and lower than that predicted by a simple foraging model. It remains uncertain whether capelin play an important regulatory role in the dynamics of early life stages of other fish.
Resumo:
Data from ichthyoplankton surveys conducted in 1972 and from 1977 to 1999 (no data were collected in 1980) by the Alaska Fisheries Science Center (NOAA, NMFS) in the western Gulf of Alaska were used to examine the timing of spawning, geographic distribution and abundance, and the vertical distribution of eggs and larvae of flathead sole (Hippoglossoides elassodon). In the western Gulf of Alaska, flathead sole spawning began in early April and peaked from early to mid-May on the continental shelf. It progressed in a southwesterly direction along the Alaska Peninsula where three main areas of flathead sole spawning were indentified: near the Kenai Peninsula, in Shelikof Strait, and between the Shumagin Islands and Unimak Island. Flathead sole eggs are pelagic, and their depth distribution may be a function of their developmental stage. Data from MOCNESS tows indicated that eggs sink near time of hatching and the larvae rise to the surface to feed. The geographic distribution of larvae followed a pattern similar to the distribution of eggs, only it shifted about one month later. Larval abundance peaked from early to mid-June in the southern portion of Shelikof Strait. Biological and environmental factors may help to retain flathead sole larvae on the continental shelf near their juvenile nursery areas.
Resumo:
A computer program was developed for the identification of the teleost fish eggs that may be found in the pelagic zone of the Black Sea. The program identifies eggs of 70 species, using up to 28 descriptive characters, and may be adapted for use outside of the Black Sea.