176 resultados para Dredging (Biology)
Resumo:
This report owes its genesis to the foresight and enthusiam of Dr. Kazuhiro Mizue. By happy circumstance, Professor Mizue contacted me in 1983 with his visionary ideas on cooperative programs. He noted that the time was right because the Japan Society for the Promotion of Science and the National Science Foundation had mutually given priority to cooperative programs in marine biology. I therefore agreed to act as the U.S. coordinator and proposed to NSF, a short trip to Japan to negotiate site visits and timing with ten previously appointed Japanese scientists and, if that trip were successful, to negotiate a joint research project, possibly followed by a joint seminar. (PDF file contains 528 pages.)
Resumo:
The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communication and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 76 pages.)
Resumo:
The Cape Canaveral, Florida, marine ecosystem is unique. There are complex current and temperature regimes that form a faunal transition zone between Atlantic tropical and subtropical waters. This zone is rich faunistically and supports large commercial fISheries for fish, scallops, and shrimp. Canaveral is also unique because it has large numbers of sea turtles year-round, this turtle aggregation exhibiting patterned seasonal changes in numbers, size frequency, and sex ratio. Additionally, a significant portion of this turtle aggregation hibernates in the Canaveral ship channel, a phenomenon rare in marine turtle populations. The Cape Canaveral area has the largest year-round concentration of sea turtles in the United States. However, the ship channel is periodically dredged by the U.S. Army Corps of Engineers in order to keep Port Canaveral open to U.S. Navy vessels, and preliminary surveys showed that many sea turtles were incidentally killed during dredging operations. In order for the Corps of Engineers to fulfill its defense dredging responsibilities, and comply with the Endangered Species Act of 1973, an interagency Sea Turtle Task Force was formed to investigate methods of reducing turtle mortalities. This Task Force promptly implemented a sea turtle research plan to determine seasonal abundance, movement patterns, sex ratios, size frequencies, and other biological parameters necessary to help mitigate dredging conflicts in the channel. The Cape Canaveral Sea Turtle Workshop is a cooperative effort to comprehensively present research results of these important studies. I gratefully acknowledge the support of everyone involved in this Workshop, particularly the anonymous team of referees who painstakingly reviewed the manuscripts. The cover illustration was drawn by Jack C. Javech. (PDF file contains 86 pages.)
Resumo:
The 1984 International Symposium and Workshop on the Biology of Fur Seals originated in informal talks in 1981. However, the scope and focus of the symposium remained unclear until an informal workshop was held in San Diego in June 1983. This meeting synthesised data on the foraging and pup attendance activities of six species of fur seals, and attempted to formulate a coherent framework for the adaptations associated with their maternal strategies (Gentry et al. 1986). During the workshop it was clear that comparative data on many key aspects of fur seal biology and ecology were missing. This absence of data applied not only to less well known species, for some of which considerable unpublished data existed, but also to better known species for which research in some areas had either been neglected or unreported. The value of applying the comparative method to seals, especially comparisons integrating physiology, ecology, and reproductive biology, was amply demonstrated by the results of the 1983 workshop (Gentry and Kooyman 1986). However, we were also aware that many other problems outside the area of maternal strategies could benefit from comparative data, such as recovery of populations from the effects of harvesting. Therefore, to accommodate the range of potential research, we organized this symposium to produce an up-to-date synthesis of relevant information for all species of fur seals. It was also clear that fur seal research could benefit from increased communication and collaboration among its practitioners. To foster the spread of ideas, we held oral presentations on some topics of current research and techniques and organized workshops on specific topics, in addition to providing opportunities for informal talks among participants. Thanks to generous support from the British Antarctic Survey, the National Marine Fisheries Service of the United States, and the Scientific Committee on Antarctic Research, the International Fur Seal Symposium was held at the British Antarctic Survey, Cambridge, England, 23-27 April 1984. The 36 participants are shown in Figure 1. A list of Symposium participants and authors is presented in Appendix 1 of the Proceedings. (PDF file contains 220 pages.)
Resumo:
Length-frequency data collected from inshore and offshore locations in the Gulf of Maine in 1966-1968 indicated that ovigerous female northern shrimp (Pandalus borealis) first appeared offshore in August and September and migrated inshore in the fall and winter. Once eggs hatched, surviving females returned offshore. Juveniles and males migrated offshore during their first two years of life. Sex transition occurred in both inshore and oll'shore waters, but most males changed sex offshore during their third and fourth years. Most shrimp changed sex and matured as females for the first time in their fourth year. Smaller females and females exposed to colder bottom temperatures spawned first. The incidence of egg parasitism peaked in January and was higher for shrimp exposed to warmer bottom temperatures. Accelerated growth at higher temperatures appeared to result in earlier or more rapid sex transition. Males and non-ovigerous females were observed to make diurnal vertical migrations, but were not found in near- surface waters where the temperature exceeded 6°C. Ovigerous females fed more heavily on benthic molluscs in inshore waters in the winter, presumably because the egg masses they were carrying prevented them from migrating vertically at night. Northern shrimp were more abundant in the southwestern region of the Gulf of Maine where bottom temperatures remain low throughout the year. Bottom trawl catch rates were highest in Jeffreys Basin where bottom temperatures were lower than at any other sampling location. Catch rates throughout the study area were inversely related to bottom temperature and reached a maximum at 3°C. An increase of 40% in fecundity between 1973 and 1979 was associated with a decline of 2-3°C in April-July offshore bottom temperatures. Furthermore, a decrease in mean fecundity per 25 mm female between 1965 and 1970 was linearly related to reduced landings between 1969 and 1974. It is hypothesized that temperature-induced changes in fecundity and, possibly, in the extent of egg mortality due to parasitism, may provide a mechanism which could partially account for changes in the size of the Gulf of Maine northern shrimp population during the last thirty years. (PDF file contains 28 pages.)
Resumo:
Venomous Indo-Pacific lionfish (Pterois miles and P. volitans) are now established along the Southeast U.S.A. and parts of the Caribbean and pose a serious threat to reef fish communities of these regions. Lionfish are likely to invade the Gulf of Mexico and potentially South America in the near future. Introductions of lionfish were noted since the 1980s along south Florida and by 2000 lionfish were established off the coast of North Carolina. Lionfish are now one of the more numerous predatory reef fishes at some locations off the Southeast U.S.A. and Caribbean. Lionfish are largely piscivores that feed occasionally on economically important reef fishes. The trophic impacts of lionfish could alter the structure of native reef fish communities and potentially hamper stock rebuilding efforts of the Snapper –Grouper Complex. Additional effects of the lionfish invasion are far-reaching and could increase coral reef ecosystem stress, threaten human health, and ultimately impact the marine aquarium industry. Control strategies for lionfish are needed to mitigate impacts, especially in protected areas. This integrated assessment provides a general overview of the biology and ecology of lionfish including genetics, taxonomy, reproductive biology, early life history and dispersal, venom defense and predation, and feeding ecology. In addition, alternative management actions for mitigating the negative impacts of lionfish, approaches for reducing the risk of future invasions, and directions for future research are provided.
Resumo:
The 23rd Annual Symposium on Sea Turtle Biology and Conservation was held between 17 and 21 March 2003 at The Legend Hotel in Kuala Lumpur, Malaysia, hosted by the Community Conservation Network, Hawaii, and WWF-Malaysia. The meeting was attended by slightly more than 300 participants representing 73 countries, a dramatic drop in participation from previous years brought about in no small part by the looming war in the middle east region and concerns over travel safety. For 22 years the Symposium had bee an Americas-based event, even though it is the annual gathering of the "international" sea turtle society, and with the move to Malaysia, the Symposium hoped to raise the awareness among the general public of the plight of amrine turtles in Southeast Asia, and share the enormous exspertise of the world authorities on sea turtles with this so-far underrepresented region. Adopting the thems, "Living With Turtles", the Symposium had a very personal flavour, and the smaller number of participants made it possible to make and renew acquaintances, and have time for discussion between sessions. While the travel safety concern excuse was often quoted, it was a pity, particularly to the large contingent of people who attended the event for the first time from underrepresented regions, that many of the household names linked to marine turtle biology and conservation were not present to share their knowledge and promote the global concerns on the plight of turtle populations.
Resumo:
This is a translation of selected articles from the Japanese language publication Hiroshimaken Suisan Shikenjo Hokoku (Report of Hirshima Prefectural Fisheries Experimental Station), Hiroshima City, Japan, vol.22, no. 1, 1960, pages 1-76. Articles translated are: Haematological study of bacteria affected oysters, The distribution of oyster larvae and spatfalls in the Hiroshima City perimeter, On the investigation of the timing of spatfalls, On the prediction of oyster seeding at inner Hiroshima Bay, Oyster growth and its environment at the oyster farm in Hiroshima Bay
Resumo:
A small isolated tide pool was studied quite intensively over a period on one month. A oensus of all animals present was taken, and a population record kept daily for the month. Fluctuations in the numbers of individuals were noted, and reasons for these fluctuations sought. The behavior and feeding habits of the various animals were noted, and an attempt was made to relate the animals to their environment. This is a student paper done for a University of California Berkeley Zoology class. Since UCB didn't have its own marine lab at the time, it rented space at Hopkins Marine Station where this work was done. Gene Haderlie went on to earn his Ph.D. from Berkeley and later became a Professor at the Naval Post Graduate School in Monterey. (PDF contains 22 pages)
Resumo:
ENGLISH: In 1952 and 1953, during the course of a study of the abrupt decline and apparent disappearance from the Gulf of Nicoya of the population of anchovetas (Cetengraulis mysticetus), an important tuna bait fish, considerable material was collected on the taxonomy, biology, and ecology of the several anchovies and the herrings inhabith1g the Gulf. The Gulf of Nicoya, approximately 50 miles long and varying in width from about 5 to 35 miles, is located on the Pacific coast of Costa Rica. The family Engraulididae is represented by four genera comprising fourteen species, and nine species were identified as members of eight genera of the family Clupeidae. All of the species inhabit other coastal areas of the tropical Eastern Pacific. SPANISH: En 1952 Y 1953, durante el curso de un estudio sobre la declinación abrupta y la aparente desaparición en el Golfo de Nicoya de la población de anchovetas (Cetengraulis mysticetus) un pez de importancia para la pesca del atún, se recolectó material considerable relacionado con la taxonomía, biología y ecología de las diversas especies de anchoas y arenques que habitan dicho Golfo. El Golfo de Nicoya, que mide aproximadamente 50 millas de largo y varía en su anchura entre 5 y 35 millas, se encuentra en la costa del Pacífico de Costa Rica. La familia de los Engráulidos está representada por cuatro géneros que comprenden catorce especies, y otras nueve fueron identificadas como miembros de ocho géneros de la familia Clupeidae. Todas estas especies habitan otras áreas costeras del Pacífico Oriental tropical. (PDF contains 144 pages.)
Resumo:
ENGLISH: The skipjack tuna, Katsuwonus pelamis is an important resource of the tropical and subtropical waters of the world ocean. Fishermen of many countries exploit this resource; at the present time, the annual world catch is approximately 200 thousand metric tons. Many fishery experts believe that the skipjack is not being fully utilized while stocks of other tunas are being fished, in some areas, at levels exceeding their maximum sustainable yields. In addition to the importance of skipjack as a commercial fish and as a source of food, there is a small but expanding recreational fishery in some countries bordering the Pacific. This bibliography provides a list of publications pertaining to the biology and fishery of the Pacific skipjack tuna. Papers concerned with food technology, food chemistry, radio-chemistry, and certain other subjects are excluded. The main sources for our publication have been the existing bibliographies of tunas, which are listed and indexed accordingly. In addition, reports of various marine laboratories and other scientific organizations have been checked; these are too numerous to list. We are fairly confident that all major works pertaining to skipjack tuna in the Pacific, printed prior to the end of 1966, appear in this bibliography. Only reports considered to be in permanent form are included. Annotations are based on actual examination of each of the entries listed here. The annotations do not evaluate a paper but serve rather to give a more precise idea of its contents if not revealed by the title alone. If the title sufficed in this respect, no annotation was prepared. A relatively small number of works believed to contain information pertinent to our bibliography could not be examined, but a list of such papers is provided. SPANISH: El atún barrilete, Katsuwonus pelamis, es un recurso importante de las aguas tropicales y subtropicales del océano mundial. Los pescadores de varios países explotan este recurso; actualmente, la captura mundial anual es aproximadamente de 200,000 toneladas métricas. Muchos expertos en la pesquería creen que el barrilete no es utilizado completamente, mientras los stocks de otros atunes son pescados en algunas áreas a niveles que exceden su rendimiento máximo sostenible. Además de la importancia del barrilete como pez comercial y como fuente de alimento, existe una pesquería pequeña recreativa que se está desarrollando en algunos países colindantes con el Pacífico. Esta bibliografía suministra una lista de publicaciones correspondientes a la biología y pesquería del atún barrilete en el Pacífico. Estudios referentes a la tecnología alimenticia, química alimenticia, radioquímica y ciertos otros sujetos son excluídos. Las fuentes principales correspondientes a nuestra publicación han sido las bibliografías existentes sobre atunes, las cuales están enumeradas y catalogadas de acuerdo. Además, se han examinado los informes de varios laboratorios marítimos y los de otras organizaciones científicas; éstos son demasiado numerosos para enumerar. Estamos bastante seguros de que todos los trabajos principales correspondientes al atún barrilete del Pacífico, editados antes de terminar el año de 1966, aparecen en esta bibliografía. Se incluyen únicamente los informes que se consideran permanentes. Las anotaciones se basan en el examen actual de cada una de las entradas aquí referidas. Las anotaciones no evaluan un estudio, pero sirven más bien para dar una idea más precisa de su contenido si el título por sí mismo no lo explica. No se preparó ninguna anotación si el título a este respecto era suficiente. Un número relativamente pequeño de trabajos que se cree tengan información pertinente a nuestra bibliografía no pudo ser examinado, pero se suministra una lista de tales estudios. (PDF contains 227 pages.)
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
Resumo:
The meristic and morphometric characteristics of Gymnarchus niloticus are described and linear equations relating various parts of the body to the head length or total length are given. The age of G. niloticus in Lake Chad (Nigeria) was determined from growth marks on the opercular bones. The mean lengths for age, and mean weights for age obtained for the first five years of life are given. The assymptotic length and the von Betarlanffy growth parameters for the males and females combined are given
Resumo:
The preliminary results obtained from the study of stomach contents of specimens of Gymnarchus niloticus of a size ranging from 56 cm (66 grams) to 152 cm (12.0 kg.) from August to December, 1982 indicate for these sizes an exclusively piscivorous diet. The predominant prey species in Lake Chad are Tilapia/Sarotherodon , and Clarias . The prey is often cut in two parts before it is swallowed. Small prey may be swallowed whole. The implication of this prey capture method on prey-predator relationship and therefore the impact of the predator is discussed. The breeding season of Gymnarchus niloticus in Lake Chad has been deduced from observation of changes in gonad maturity stages and the results indicate that breeding takes place between August and November. Data are also presented on the fecundity, size of ripe eggs and probable size at maturity
Resumo:
(PDF contains 94 pages.)