22 resultados para Data Systems
Resumo:
The South China Sea is an important fishing area with an annual harvest of some 5 million tonnes, or 10% of the catches jointly taken by the developing nations of the world. Details are given of a model of the area describing fisheries catches and biological interactions. The area, viewed as a large marine ecosystem, was divided into 10 subsystems; each subsystem was then linked with adjacent subsystems by predatory links, and detritus flows. An analysis was then made of catch statistics for each of the subsystems. It is believed that if all systems could be harvested at around the highest efficiency, an additional 5-6 million tonnes could be taken annually from the South China Sea; however, more refined analyses are needed to further investigate these possibilities. If linked with careful studies of the economic and human aspects of fishing, such analyses will provide guidelines for integrated fisheries management advice.
Resumo:
The goal of this work is to examine the properties of recording mechanisms which are common to continuously recording high-resolution natural systems in which climatic signals are imprinted and preserved as proxy records. These systems produce seasonal structures as an indirect response to climatic variability over the annual cycle. We compare the proxy records from four different high-resolution systems: the Quelccaya ice cap of the Peruvian Andes; composite tree ring growth from southern California and the southwestern United States; and the marine varve sedimentation systems in the Santa Barbara basin (off California, United States) and in the Gulf of California, Mexico. An important focus of this work is to indicate how the interannual climatic signal is recorded in a variety of different natural systems with vastly different recording mechanisms and widely separated in space. These high-resolution records are the products of natural processes which should be comparable, to some degree, to human-engineered systems developed to transmit and record physical quantities. We therefore present a simple analogy of a data recording system as a heuristic model to provide some unifying concepts with which we may better understand the formation of the records. This analogy assumes special significance when we consider that natural proxy records are the principal means to extend our knowledge of climatic variability into the past, beyond the limits of instrumentally recorded data.
Resumo:
Harmful algal blooms (HABs) are a significant and potentially expanding problem around the world. Resource management and public health protection require sufficient information to reduce the impacts of HABs by response strategies and through warnings and advisories. To be effective, these programs can best be served by an integration of improved detection methods with both evolving monitoring systems and new communications capabilities. Data sets are typically collected from a variety of sources, these can be considered as several types: point data, such as water samples; transects, such as from shipboard continuous sampling; and synoptic, such as from satellite imagery. Generation of a field of the HAB distribution requires all of these sampling approaches. This means that the data sets need to be interpreted and analyzed with each other to create the field or distribution of the HAB. The HAB field is also a necessary input into models that forecast blooms. Several systems have developed strategies that demonstrate these approaches. These range from data sets collected at key sites, such as swimming beaches, to automated collection systems, to integration of interpreted satellite data. Improved data collection, particularly in speed and cost, will be one of the advances of the next few years. Methods to improve creation of the HAB field from the variety of data types will be necessary for routine nowcasting and forecasting of HABs.
Resumo:
ICLARM introduced integrated aquaculture-agriculture (IAA) in Sakata, Malawi three years ago. Since that time, and without extension support, the number of farmers with ponds increased from 4 in 1993/94 to 12 in 1995/96. To learn why and how IAA is spreading, a study of impact and adoption was conducted in the 1995/96 production season. Interviews were conducted with farmers to discuss lAA and collect data on farm function through the use of bioresource flow diagrams. Motivations given by farmers as to why they adopted IAA were to improve household nutrition and income. Constraints to adoption identified by farmers were availability of labor and capital to purchase inputs
Resumo:
Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. The theory of chaotic dynamical systems includes methods that can test whether any given set of time series data, such as paleoclimate proxy data, are consistent with a deterministic interpretation. Paleoclimate data with annual resolution and absolute dating provide multiple channels of concurrent time series; these multiple time series can be treated as potential phase space coordinates to test whether interannual climate variability is deterministic. Dynamical structure tests which take advantage of such multichannel data are proposed and illustrated by application to a simple synthetic model of chaos, and to two paleoclimate proxy data series.
Resumo:
The growth, survival and profitability of C. chanos and P. monodon grown in 5 different combinations for 100 days in 500m2 brackish water ponds were assessed. Differences in the growth and production of prawns cultured singly or in combination with milkfish at increasing stocking density strongly suggests that the presence of milkfish exerts some negative effect on prawn. However, growth production and competition index data suggest that the presence of prawn do not significantly affect milkfish. While the maximum production of prawn can be attained in monoculture, its polyculture with 2000 milkfish/ha is also economically feasible.
Resumo:
Biodiversity values provide objective data and advice from which policy makes could assess the conservation options and determine optimal policies that would balance the needs of conservation with the socia-economic needs of the people in the area.