48 resultados para DISTRIBUCIÓN VERTICAL DE TREMPERATURA
Resumo:
Thirty-three skipjack tuna (Katsuwonus pelamis) (53−73 cm fork length) were caught and released with implanted archival tags in the eastern equatorial Pacific Ocean during April 2004. Six skipjack tuna were recap-tured, and 9.3 to 10.1 days of depth and temperature data were down-loaded from five recovered tags. The vertical habitat-use distributions indicated that skipjack tuna not associated with floating objects spent 98.6% of their time above the thermocline (depth=44 m) during the night, but spent 37.7% of their time below the thermocline during the day. When not associated with floating objects, skipjack tuna displayed repetitive bounce-diving behavior to depths between 50 and 300 m during the day. The deepest dive recorded was 596 m, where the ambient temperature was 7.7°C. One dive was particularly remarkable because the fish contin-uously swam for 2 hours below the thermocline to a maximum depth of 330 m. During that dive, the ambient temperature reached a low of 10.5°C, and the peritoneal cavity temperature reached a low of 15.9°C. The vertical movements and habitat use of skipjack tuna, revealed in this study, provide a much greater understanding of their ecological niche and catchability by purse-seine fisheries.
Resumo:
Water currents are vertically structured in many marine systems and as a result, vertical movements by fish larvae and zooplankton affect horizontal transport (Power, 1984). In estuaries, the vertical movements of larvae with tidal periods can result in their retention or ingress (Fortier and Leggett, 1983; Rijnsdorp et al., 1985; Cronin and Forward, 1986; Forward et al., 1999). On the continental shelf, the vertical movements of organisms interact daily and ontogenetically with depth-varying currents to affect horizontal transport (Pillar et al., 1989; Barange and Pillar, 1992; Cowen et al., 1993, 2000; Batchelder et al., 2002).
Resumo:
In July 2006, a mandatory observer program was implemented to characterize the commercial reef fish fishery operating in the U.S. Gulf of Mexico. The primary gear types assessed included bottom longline and vertical line (bandit and handline). A total of 73,205 fish (183 taxa) were observed in the longline fishery. Most (66%) were red grouper, Epinephelus morio, and yellowedge grouper, E. flavolimbatus. In the vertical line fishery, 89,015 fish (178 taxa) were observed of which most (60%) were red snapper, Lutjanus campechanus, and vermilion snapper, Rhomboplites aurorubens. Based on surface observations of discarded under-sized target and unwanted species, the majority of fish were released alive; minimum assumed mortality was 23% for the vertical line and 24% for the bottom longline fishery. Of the individuals released alive in the longline fishery, 42% had visual signs of barotrauma stress (air bladder expansion/and or eyes protruding). In the vertical line fishery, 35% of the fish were released in a stressed state. Red grouper and red snapper size composition by depth and gear type were determined. Catch-per-unit-effort for dominant species in both fisheries, illustrated spatial differences in distribution between the eastern and western Gulf. Hot Spot Analyses for red grouper and red snapper identified areas with significant clustering of high or low CPUE values.
Resumo:
Undaria pinnatifida was registered in Ría Deseado (47º45´S, 65º55´W _ southern Patagonia) by the first time in spring 2005, colonizing the intertidal and shallow subtidal. A seasonal survey in 2006 showed that U. pinnatifida was established in a sheltered zone inside the estuary, along a coastal fringe of 8 km between Punta Cascajo and Cañadón del Puerto. This continuous distribution was only interrupted in the mouth of canyons that flow into Ría Deseado, where the bottom is conformed by mud and sand. The sporophytes were mainly found colonizing the rocky bottom in the lower intertidal, bordering the Macrocystis pyrifera population. The highest density and biomass of sporophytes (12.13 ind. m-2; 254.60 g m-2) were registered during spring, when the population was mainly conformed by individuals of medium sizes. The lowest density and biomass (0.33 ind. m-2; 5.69 g m-2) were registered in autumn. Juvenile sporophytes recruited throughout the year, but presented the highest percentage in the population during autumn and winter. First mature sporophytes appeared in spring and attained their maximum size in summer. After this, the sprophytes decayed and disappeared. Environmental factors such as rocky bottoms availability and water transparency may be the main factors determining the sporophytes distribution in Ría Deseado. The field experiment point out that M. pyrifera population is an important factor controlling the dispersion of U. pinnatifida towards the subtidal. SPANISH: Undaria pinnatifida fue registrada en la Ría Deseado (47º45´ S, 65º55´ W _ Patagonia austral) durante la primavera de 2005, colonizando el intermareal y submareal somero. Los relevamientos estacionales realizados durante el 2006, revelaron que U. pinnatifida se encontró establecida en una zona protegida en el interior de la ría, ocupando una franja costera de aproximadamente 8 km de largo entre Punta Cascajo y el Cañadón del Puerto. Esta distribución casi continua sólo presentó algunas interrupciones en la boca de los cañadones que desembocan en la ría, donde el fondo predominante es de tipo areno-fangoso. Los esporofitos de U. pinnatifida ocuparon preferentemente el fondo rocoso del intermareal inferior, limitando con la población de Macrocystis pyrifera. La densidad y biomasa más altas de esporofitos (12,13 ind. m-2; 254,60 g m-2) fueron registradas en primavera, cuando la población se encontró compuesta principalmente por individuos de tallas intermedias. La densidad y biomasa más bajas (0,33 ind. m-2; 5,69 g m-2) fueron registradas durante el otoño. Los esporofitos juveniles se reclutaron a lo largo de todo el año, pero alcanzaron su mayor proporción en la población durante el otoño y el invierno. Los esporofitos reproductivamente maduros aparecieron durante la primavera y alcanzaron su talla máxima durante el verano, luego del cual comenzaron a deteriorarse y a desaparecer. Factores como la disponibilidad de fondos rocosos y la transparencia de las aguas podrían actuar como los principales factores determinantes de su distribución en la ría. El experimento de campo realizado revela que los bosques de M. pyrifera actúan también como un importante factor de control, limitando la dispersión de U. pinnatifida hacia el submareal.
Abundancia y Distribución de Larvas del Complejo Lutjanidae – Serranidae en la Plataforma de Yucatán