85 resultados para Craniofacial identification
Resumo:
DNA in canned tuna is degraded into short fragments of a rew hundred base pairs. The polymerase chain reaction (PCR) was used to amplify short sequences of mitochondrial DNA, which were denatured and analysed by polyacrylamide gel electrophoresis (native PAGE) for detection of single strand conformation polymorphisms. Species specific patterns of DNA bands were obtained for a number of tuna and bonito species. DE: In Thunfischkonserven liegt die DNA in Form kurzkettiger Fragmente von wenigen Hundert Basenpaaren Länge vor. Mit Hilfe der Polymerase-Kettenreaktion (PCR) wurden kurze Sequenzen der mitochondrialen DNA vervielfältigt. Anschließend wurde die gebildete DNA in Einzelsträngen überführt, die durch eine native Polyacrylamidgel-Elektrophorese (PAGE) aufgetrennt wurde. Für eine Reihe von Thunfischen und Boniten ergaben die Einzelstränge artspezifische Bandenmuster, die auf unterschiedliche Konformationen der DNA-Stränge der einzelnen Fischarten zurückzuführen sind.
Resumo:
The aim of this communication is to briefly review nomenclature in the genus Callicorixa, describe the variation in the dark markings on the posterior legs of all four species, describe alternative diagnostic features, and provide a key to identification based on these alternative features. Attention is also drawn to a small error in FBA Scientific Publication 50 (Adults of the British aquatic Hemiptera Heteroptera: a key with ecological notes).
Resumo:
There are 34 species of the family Corixidae (Hemiptera Heteroptera) in Britain and Ireland of which Sigara striata and Sigara dorsalis are the only two British representatives. In this article the authors briefly consider a range of diagnostic features that may be used to separate British specimens of striata from dorsalis. Most of these morphological features have been used in keys to the British species of the subgenus Sigara sensu strictu. A scoring system has also been devised to facilitate the identification of individuals from the southeast of England, although it is applicable to the whole of the British Isles, and a new (short) key is presented.
Resumo:
This is a short excerpt of the original paper giving the key to the identification of the naupliar instars of the genus Cyclops.
Resumo:
This is a short excerpt of the original paper giving the key to the identification of the naupliar instars of the genus Cyclops.
Resumo:
A description of the algal genus Cladophora from Vol 10 of the ”Freshwater Flora of Poland”. Illustrations are included.
Resumo:
The fetal and larval development of many freshwater fish is already relatively well covered. Coverage of the morphology of fish-species' eggs is very sparse. For this reason the authors have attempted to prepare a key on fish eggs which covers the bulk of German Teleostei fish. The key also includes a discussion of problems of categorization and terminology.
Resumo:
A good understanding of the population dynamics of algal communities is vital in many ecological and pollution studies of freshwater and oceanic systems. Present methods require manual counting and identification of algae and can take up to 90 min to obtain a statistically reliable count on a complex population. Several alternative techniques to accelerate the process have been tried on marine samples but none have been completely successful because insufficient effort has been put into verifying the technique before field trials. The objective of the present study has been to assess the potential of in vivo fluorescence of algal pigments as a means of automatically identifying algae. For this work total fluorescence spectroscopy was chosen as the observation technique.
Resumo:
This bibliography covers the literature up to the end of 1978. The criteria used in the selection of references were that they should aid identification of invertebrates directly; thus, works solely concerned with the taxonomy of a particular group are in general omitted unless they contain a key. Some check-lists are however included where they give current nomenclature. The references are arranged alphabetically within each group and deal mainly with macro-invertebrates but include available keys to some microscopic invertebrates. Internal parasites and hymenopterous parasitoids are omitted. For insects the life stages to which the key applies are given where this is not clear in the reference. A number of keys to non-aquatic stages have been included in the hope that they may prove useful in certain circumstances. In addition, under a general head, latest check-lists are referred to together with bibliographies of algal keys and a guide for the identification of British water plants.
Resumo:
The biomass of the phytoplankton and its composition is one of the most important factors in water quality control. Determination of the phytoplankton assemblage is usually done by microscopic analysis (Utermöhl's method). Quantitative estimations of the biovolume, by cell counting and cell size measurements, are time-consuming and normally are not done in routine water quality control. Several alternatives have been tried: computer-based image analysis, spectral fluorescence signatures, flow cytometry and pigment fingerprinting aided by high performance liquid chromatography (HPLC). The latter method is based on the fact that each major algal group of taxa contains a specific carotenoid which can be used for identification and relative quantification of the taxa in the total assemblage. This article gives a brief comparative introduction to the different techniques available and presents some recent results obtained by HPLC-based pigment fingerprinting, applied to three lakes of different trophic status. The results show that this technique yields reliable results from different lake types and is a powerful tool for studying the distribution pattern of the phytoplankton community in relation to water depth. However, some restrictions should be taken into account for the interpretation of routine data.
Resumo:
A taxonomic assessment of fish species was carried out in the Lake Ayamé as a preliminary evaluation within the framework of a project to appraise the biodiversity changes occurred in fish after the construction of a dam at Ayamé in 1959.
Resumo:
Random Amplified Polymorphic DNA (RAPD) markers and cytochrome b (Cyt-b) gene sequences were utilized to fingerprint and construct phylogenetic relationships among four species of mackerel commonly found in the Straits of Malacca namely Rastrelliger kanagurta, R. brachysoma, Decapterus maruadsi and D. russelli. The UPGMA dendogram and genetic distance clearly showed that the individuals clustered into their own genus and species except for the Decapterus. These results were also supported by partial mtDNA cytochrome b gene sequences (279 bp) which found monotypic sequence for all Decapterus studied. Cytochrome b sequence phylogeny generated through Neighbor Joining (NJ) method was congruent with RAPD data. Results showed clear discrimination between both genera with average nucleotide divergence about 25.43%. This marker also demonstrated R. brachysoma and R. kanagurta as distinct species separated with average nucleotide divergence about 2.76%. However, based on BLAST analysis, this study indicated that the fish initially identified as D. maruadsi was actually D. russelli. The results highlighted the importance of genetic analysis for taxonomic validation, in addition to morphological traits.
Resumo:
Molecular markers have been demonstrated to be useful for the estimation of stock mixture proportions where the origin of individuals is determined from baseline samples. Bayesian statistical methods are widely recognized as providing a preferable strategy for such analyses. In general, Bayesian estimation is based on standard latent class models using data augmentation through Markov chain Monte Carlo techniques. In this study, we introduce a novel approach based on recent developments in the estimation of genetic population structure. Our strategy combines analytical integration with stochastic optimization to identify stock mixtures. An important enhancement over previous methods is the possibility of appropriately handling data where only partial baseline sample information is available. We address the potential use of nonmolecular, auxiliary biological information in our Bayesian model.