29 resultados para Coordinated tunning
Resumo:
The new German R.V. "Walther Herwig III" joined the International North Sea Bottom Trawl Survey (IBTS) coordinated in the frame or ICES from February 18 to March 22 1994. A total of 354 valid half hour tows were made by seven research vessels from the different ICES members in order to determine the strength of incoming year classes of commercially most important fish species. Preliminary index figures for the stocks under observation of all participating vessels show that only the North Sea sprat stock developed a substantial year class in 1993. In addition, hydrographic data were collected during the survey. These data show the temperatures and salinities of the northern and central North Sea in most parts beneath the mean values during the period under investigation.
Resumo:
FRV "Walther Herwig" participated in a survey internationally coordinated by ICES in waters west of the British Isles and the Gulf of Biscay from February 14 to March 5. Results are given especially on mackerel and horse mackerel from the Hebrides area, west of Ireland, Great and Littie Sole Bank, and Eddystone.
Resumo:
From January 22 to February 12, 1993, "Walther Herwig" participated in the ICES coordinated International Bottom Trawl Survey (IBTS, formerly International Young Fish Survey (IYFS)) in the North Sea. In total all participating nations covered 369 fishing stations, 65 of which were investigated by "Walther Herwig". Preliminary results show that the youngest yearclasses of haddock, whiting, sprat and Norway pout are well above average whereas herring in his second year of life is only average. No signs of a recovery of the North Sea mackerel stock could be detected. The measured temperature data show a more or less mean situation during the period under review.
Resumo:
Contemporary striped bass population modeling efforts on coastal stocks point to a reduced population fecundity in Chesapeake Bay being partially responsible for declining reproduction (Anonymous 1985; Boreman and Goodyear 1984). Fecundity values used in these models were based on earlier work by jackson and tiller (1952), lewis and Bonner (1966), Hollis (1967) and Holland and Yelverton (1973). An important feature to the Boreman and Goodyear (1985) model (FSIM) is an accurate determination of the fecundity weight regression equation used to determine the rate of egg deposition over time. Egg deposition models in turn can be used to determine how reproductive potential is changing over time in response to various management actions, i.e. reducing fishing mortality rates. thus it is imperative to follow population stock structure in the Bay system and to develop a contemporary fecundity relationship for striped bass. This report deals with the gonadal material collected in 1986 and 1987 from a coordinated Maryland field program. Samples were obtained from drift gill net collections during the spawning season from four localities: Potomac Estuary, Upper Bay, Chesapeake and Delaware Canal, and the Choptank Estuary (Figure 1).
Resumo:
Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).
Resumo:
To develop an understanding of stock structure and recruitment variation in Bering Sea pollock, the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) funded an 7-year (1991-1997), interdisciplinary project named Bering Sea Fisheries-Oceanography Coordinated Investigations (BS FOCI; Schumacher and Kendall, 1995) for which NOAA and academic researchers were selected through a competitive process (Macklin, this report). The project goals, based on recommendations from an international symposium on pollock (Aron and Balsiger, 1989) were to (1) determine stock structure in the Bering Sea and its potential relationship to physical oceanography, and (2) examine recruitment processes in the eastern Bering Sea. Both of these have direct implication to management. An integrated set of field, laboratory, and modeling studies were established to accomplish these goals. To address the first goal, project objectives were to establish details of oceanic circulation relevant to larval dispersal and separation of stocks, and determine if unique chemical or genetic indicators existed for different stocks. The recruitment component of BS FOCI, addressing the second goal, focused on understanding causes of variable mortality of pollock larvae in the different habitats of the eastern Bering Sea. The emphasis of recruitment studies was to determine the dominant physical oceanographic features (turbulence, temperature, and transport) that could influence survival of pollock larvae, and investigate factors controlling food production for the larvae. A later component contrasted juvenile habitat in three hydrographic regimes around the Pribilof Islands (Brodeur, this report).
National Centers for Coastal Ocean Science Coastal Ecosystem Assessment Program: a manual of methods
Resumo:
Environmental managers strive to preserve natural resources for future generations but have limited decision-making tools to define ecosystem health. Many programs offer relevant broad-scale, environmental policy information on regional ecosystem health. These programs provide evidence of environmental condition and change, but lack connections between local impacts and direct effects on living resources. To address this need, the National Oceanic and Atmospheric Administration/National Ocean Service (NOAA/NOS) Cooperative Oxford Laboratory (COL), in cooperation with federal, state, and academic partners, implemented an integrated biotic ecosystem assessment on a sub-watershed 14-digit Hydrologic Unit Code (HUD) scale in Chesapeake Bay. The goals of this effort were to 1) establish a suite of bioindicators that are sensitive to ecosystem change, 2) establish the effects of varying land-use patterns on water quality and the subsequent health of living resources, 3) communicate these findings to local decision-makers, and 4) evaluate the success of management decisions in these systems. To establish indicators, three sub-watersheds were chosen based on statistical analysis of land-use patterns to represent a gradient from developed to agricultural. The Magothy (developed), Corsica (agricultural), and Rhode (reference) Rivers were identified. A random stratified design was developed based on depth (2m contour) and river mile. Sampling approaches were coordinated within this structure to allow for robust system comparisons. The sampling approach was hierarchal, with metrics chosen to represent a range from community to cellular level responses across multiple organisms. This approach allowed for the identification of sub-lethal stressors, and assessment of their impact on the organism and subsequently the population. Fish, crabs, clams, oysters, benthic organisms, and bacteria were targeted, as each occupies a separate ecological niche and may respond dissimilarly to environmental stressors. Particular attention was focused on the use of pathobiology as a tool for assessing environmental condition. By integrating the biotic component with water quality, sediment indices, and land- use information, this holistic evaluation of ecosystem health will provide management entities with information needed to inform local decision-making processes and establish benchmarks for future restoration efforts.
Resumo:
In appreciation of the pressing need for coordinated research in various aspects of fishery technology and for the overall development of fisheries industries in India, the Ministry of Food and Agriculture had decided to set up the Central Institute of Fisheries Technology. The Institute was established in 1957 at Cochin (Ernakulam). The research work at the Institute including its sub-stations and units is carried out in two wings: Craft and Gear Wing and Processing Wing. The third unit, the Extension Information and Statistics Wing, renders a service by functioning as a liaison between the research laboratories and the industry.
On farm trial of Bangladesh Fisheries Research Institute (BFRI) evolved two aquaculture technologies
Resumo:
Two BFRI evolved aquaculture technologies - integrated rice fish farming and carp polyculture with over-wintered fingerlings under different stocking densities were tested during 2003-04. The study was coordinated with two local NGOs namely NICHAITA and JNDP, Muktagacha, Mymensingh. Integrated rice fish farming technology was demonstrated in 9 plots each having an area between 60-100 dec. during boro season. Fifteen days after transplantation of rice seedlings, fingerlings of rajpunti (Barbodes gonionotus) of 7-10 g of individual weight were stocked in the rice fields at the density of 3,000 (T1), 3,750 (T2) and 4,500/ha (T3). The corresponding final weight of fish after three and half months in treatments 1, 2 and 3 were 110±14.21, 101±16.55 and 86±22.28 g, respectively. The mean weight of fish in treatments 1 and 2 was significantly higher than treatment 3. Fish production obtained from treatments 1, 2 and 3 were 218.16±18.29, 239.70±25.11 and 236±24.66 kg/ha, respectively. On-farm demonstrations of carp polyculture using over-wintered fingerlings rohu (25-28 g), catla (24-26 g), mrigal (21-26 g) and grass carp (20-24 g) under different stocking densities were undertaken in nine earthen ponds (1,200-1,600 square meters) for a period of six months at three different stocking densities. The stocking densities of treatment 1 (T1), treatment 2 (T2) and treatment 3 (T3) were 2,000, 3,000 and 4,000/ha, respectively. Fish were fed with rice bran and mustard oil cake (3:1). Soft green grass and banana leaves were provided mainly for grass carp. At harvest, the production obtained in treatments 1, 2 and 3 were 2,325±74.75, 2,620±49.66 and 2,982± 171.52 kg/ha, respectively. The results demonstrated higher growth of fish in treatment 1 than those of treatments 2 and 3. However, treatment 3 contributed relatively higher production than those of treatments 1 and 2, whereas, highest net benefit was received from treatment 2.
Resumo:
A comprehensive Frame survey was carried out in lakes Kwania, Kyoga and the Kyoga basin minor lakes which include Lake Sisina in 2002 (Figure 1). The Frame survey was coordinated by the Department of Fisheries Resources (DFR) assisted by the National Fisheries Resources Research Institute (NAFIRRI) with technical support. The riparian districts through the sub-county fisheries offices and the BMUs provided the enumerators and supervisors. The frame survey captured all the important characteristics of the fisheries and facilities supporting the fisheries and thus provides a strong baseline for future reference of management interventions in the basin.
Resumo:
This Socioeconomic Monitoring (SocMon) training workshop was coordinated by the Small Fisher Federation of Lanka (SFFL). Planned outputs included: participants from Mannar trained in SocMon methodologies; draft SocMon reports fro Vidathaltivu; a workplan for Mannar; a communication strategy for Vidathaltivu/ Mannar; and key inputs to a regional SocMon strategy
Resumo:
Distribution and growth biology of rock oyster (Saccostrea cucullata) in the northern shores of Oman sea have been struied. During this one-year study, samples have been taken monthly from ten different stations. quantity of vertical distribution of this species was obseredl in the mid - intertidal zone. After determining the spread pattern, the following subjects were studied: - Growth parameters - Distionction of the "cohorts" - Determination of "spawning Season" - Condition of the "Gonado Somatic Index" - Sex ratio - Length of the species during the first year of maturation. - Identification and determination of percentage of "Biofouler Organisms." Results obtained from the above - mentioned studies show that considering a growth factor (k) of 0.52, the value of "Loo " for this species is equal to 114 (mm).Five to six different age groups were observed among the samples taken. In the areas where this study was conducted, this species grows 24 to 30 (mm) in the first year of its life this growth rate is lower in the higher - aged grpups relative to the lewer - aged groups, so that the longest size classes grow between 4 to 6 (mm) per year. • The maxinum Value of the "Condition Index" is in the pozm area and the minimum value of it belongs to Darak and Tang areas. Along with the increase in the growth of gonads the above mentioned condition index increases gradually simultaneous with the onset of spawning. Also, study of the influence of environmental factors on the maturation process suggests that the most important factors affecting maturation and spawing are temperature and salinity. The study of GSI shows that this species has a coordinated bimodal spawing trend, with its spring peak in june and its autumn peak, being still higher than the spring peak, in september. The recruitment curve confirms the above spawning peaks with its peaks occuring after a delay of one month or maximum two months in comparison to the spawning peaks. The results of calcuation of "Sex Ratio" of this species in each area show that sex ratio is 1:1. Among the first size classes that reach maturity, nearly 67% of the samples are male and the remaining 33% are female. with the increase in the shell size, the percentage of males decreases and the percentage of females increases. , The above facts prove the protandrous nature of this species the diagram showing the sizes of the first samples which reach maturity suggests that more than 50% of the samples mature after their length exceeds 36 (mm). The shortest mature sample was found to have a length of 22(mm). After studying "Biofouler Organism" nine different invertebrate groups were indentified. Barnacles and Tunicates have the highest and lowest percentages respectively. According to zonal observations, Barnacles and polychacta do the greatest damage to this species.
Resumo:
Under the worrisomely changing situation in fish species diversity, water environment characteristics, socio-economic dimensions and other ecosystems variables in Lake Victoria, there is an urgent need to put in place effective research and management packages aimed at safe guarding the sustainability of the vast resources of the lake. Priority in have been out-lined to develop strategies which would promote biological productivity and diversity, and socio-economic returns. But given the size of the lake (69,000 km2) and the complexity of dynamic forces which are driving the changes, coordinated approach for research and management among the riparian states and the international scientific community will be required. The task is not only extensive but urgent as well.
Resumo:
A comprehensive Frame survey was carried out on lakes Kwania, Bisina, Nakuwa, Kyoga and other minor lakes in the Lake Kyoga Basin in June 2008 (Figure 1). The Frame survey was coordinated by the Department of Fisheries Resources (DFR) in collaboration with the National Fisheries Resources Research Institute (NaFIRRI) in terms of technical support. The riparian districts through the sub-county fisheries offices and the BMUs provided the enumerators and supervisors. The frame survey captured all the important characteristics of the fisheries and facilities supporting the fisheries and thus provides a strong baseline for future reference of management interventions in the basin.