75 resultados para Charlotte Harbor
Resumo:
Harbor seals (Phoca fvitulina) are an abundant predator along the west coast of North America, and there is considerable interest in their diet composition, especially in regard to predation on valued fish stocks. Available informationon harbor seal diets, primarily derived from scat analysis, suggests that adult salmon (Oncorhynchus spp.), Pacific Herring (Clupea pallasii), and gadids predominate. Because diet assessments based on scat analysis may be biased, we investigated diet composition through quantitative analysis of fatty acid signatures. Blubber samples from 49 harbor seals captured in western North America from haul-outs within the area of the San Juan Islands and southern Strait of Georgia in the Salish Sea were analyzed for fatty acid composition, along with 269 fish and squid specimens representing 27 potential prey classes. Diet estimates varied spatially, demographically, and among individual harbor seals. Findings confirmed the prevalence of previously identified prey species in harbor seal diets, but other species also contributed significantly. In particular, Black (Sebastes melanops) and Yellowtail (S. flavidus) Rockfish were estimated to compose up to 50% of some individual seal diets. Specialization and high predation rates on Black and Yellowtail Rockfish by a subset of harbor seals may play a role in the population dynamics of these regional rockfish stocks that is greater than previously realized.
Resumo:
The harbor seal (Phoca vitulina) is a large-bodied and abundant predator in the Salish Sea ecosystem, and its population has recovered since the 1970s after passage of the Marine Mammal Protection Act and the cessation of bounties. Little is known about how this large predator population may affect the recovery of fish stocks in the Salish Sea, where candidate marine protected areas are being proposed. We used a bioenergetics model to calculate baseline consumption rates in the San Juan Islands, Washington. Salmonids (Oncorhynchus spp.) and herring (Clupeidae) were the 2 most energetically important prey groups for biomass consumed by harbor seals. Estimated consumption of salmonids was 783 (±380 standard deviation [SD]) metric tons (t) in the breeding season and 675 (±388 SD t in the nonbreeding season. Estimated consumption of herring was 646 (±303 SD) t in the breeding season and 2151 (±706 SD) t in the nonbreeding season. Rockfish, a depressed fish stock currently in need of population recovery, composed one of the minor prey groups consumed by harbor seals (84 [±26 SD] t in the nonbreeding season). The variables of seal body mass and proportion of prey in seal diet explained >80% of the total variation in model outputs. Prey groups, such as rockfish, that are targeted for recovery may still be affected by even low levels of predation. This study highlights the importance of salmonids and herring for the seal population and provides a framework for refining consumption estimates and their confidence intervals with future data.
Resumo:
The impacts of widening and deepening the existing navigation channel in Grays Harbor on Dungeness crab, crangon shrimp and fish was investigated. The spatial and temporal distribution of these organisms was studied using an otter trawl and ring nets, and the uptake of organisms by dredges was estimated from samples collected on working hopper and pipeline dredges. ... Impacts of the dredging project on crabs, shrimp and fish could be associated with entrainment, food loss and toxicants released from sediments. Scenarios are presented that predict impacts. Suggestions for reducing impacts are given.
Resumo:
The increase in harbor seal (Phoca vitulina richardsi) abundance, concurrent with the decrease in salmonid (Oncorhynchus spp.) and other fish stocks, raises concerns about the potential negative impact of seals on fish populations. Although harbor seals are found in rivers and estuaries, their presence is not necessarily indicative of exclusive or predominant feeding in these systems. We examined the diet of harbor seals in the Umpqua River, Oregon, during 1997 and 1998 to indirectly assess whether or not they were feeding in the river. Fish otoliths and other skeletal structures were recovered from 651 scats and used to identify seal prey. The use of all diagnostic prey structures, rather than just otoliths, increased our estimates of the number of taxa, the minimum number of individuals and percent frequency of occurrence (%FO) of prey consumed. The %FO indicated that the most common prey were pleuronectids, Pacific hake (Merluccius productus), Pacific stag-horn sculpin (Leptocottus armatus), osmerids, and shiner surfperch (Cymatogaster aggregata). The majority (76%) of prey were fish that inhabit marine waters exclusively and fish found in marine and estuarine areas (e.g. anadromous spp.) which would indicate that seals forage predominantly at sea and use the estuary for resting and opportunistic feeding. Salmonid remains were encountered in 39 samples (6%); two samples contained identifiable otoliths, which were determined to be from chi-nook salmon (O. tshawytscha). Because of the complex salmonid composition in the Umpqua River, we used molecular genetic techniques on salmonid bones retrieved from scat to discern species that were rare from those that were abundant. Of the 37 scats with salmonid bones but no otoliths, bones were identified genetically as chinook or coho (O. kisutch) salmon, or steelhead trout (O. mykiss) in 90% of the samples.
Resumo:
Twenty-six stocks of Pacific salmon and trout (Oncorhynchus spp.), representing evolutionary significant units (ESU), are listed as threatened or endangered under the Endangered Species Act (ESA) and six more stocks are currently being evaluated for listing. The ecological and economic consequences of these listings are large; therefore considerable effort has been made to understand and respond to these declining populations. Until recently, Pacific harbor seals (Phoca vitulina richardsi) on the west coast increased an average of 5% to 7% per year as a result of the Marine Mammal Protection Act of 1972 (Brown and Kohlman2). Pacific salmon are seasonally important prey for harbor seals (Roffe and Mate, 1984; Olesiuk, 1993); therefore quantifying and understanding the interaction between these two protected species is important for Morphobiologically sound management strategies. Because some Pacific salmonid species in a given area may be threatened or endangered, while others are relatively abundant, it is important to distinguish the species of salmonid upon which the harbor seals are preying. This study takes the first step in understanding these interactions by using molecular genetic tools for species-level identification of salmonid skeletal remains recovered from Pacific harbor seal scats.
Resumo:
During a 1995 aerial video survey of the coastline of Johnstone Strait, an unusual shoreline feature was noted and termed “clam terraces” (inset) because of the terrace-type morphology and the apparent association with high clam productivity on the sandflats. Typical alongshore lengths of the terrace ridges are 20-50m, and across-shore widths are typically 20-40m. An area with an especially high density of clam terraces was noted in the Broughton Archipelago, between Broughton and Gilford Islands of southeastern Queen Charlotte Strait. Clam terraces in this area were inventoried from the aerial video imagery to quantify their distribution. The terraces accounted for over 14 km of shoreline and 365 clam terraces were documented. A three-day field survey by a coastal geomorphologist, archeologist and marine biologist was conducted to document the features and determine their origin. Nine clam terraces were surveyed. The field observations confirmed that: the ridges are comprised of boulder/cobblesized material, ridge crests are typically in the range of 1-1.5m above chart datum, sandflats are comprised almost entirely of shell fragments (barnacles and clams) and sandflats have very high shellfish production. There are an abundance of shell middens in the area (over 175) suggesting that the shellfish associated with the terraces were an important food source of aboriginal peoples. The origin of the ridges is unknown; they appear to be a relict feature in that they are not actively being modified by present-day processes. The ridges may be a relict sea-ice feature, although the mechanics of ridge formation is uncertain. Sand accumulates behind the ridge because the supply rate of the shell fragments exceeds the dispersal rate in these low energy environments. The high density areas of clam terraces correspond to high density areas of shell middens, and it is probable that the clam terraces were subjected to some degree of modification by aboriginal shellfish gatherers over the thousands of years of occupation in the region. (Document contains 39 pages)
Resumo:
From October 1970 through February 1972, temperature, salinity, dissolved oxygen, secchi depth and five major nutrients were observed at approximately monthly intervals in Elkhorn Slough and Moss Landing Harbor. In addition, similar hourly observations were made during two tidal studies during the wet and dry seasons. From the salinity measurements during the summer, a salt balance for Elkhorn Slough is formulated and rnean eddy diffusion coefficients are determined. The diffusion nlodel applied to longitudinal phosphate distributions yielded a mean diffusive flux of 12 kg P04/day (140 pg-at/m^2/day) for the area above the mean tidal prism. Consistent differences, apparently due to differing regenerati on ra tes, were observed in the phosphate and nitrogen distributions. Bottom sediments are proposed as a possible source for phosphate and as a sink for fixed nitrogen. Dairy farms located along central Elkhorn Slough are apparently a source for reduced nitrogen. During summer, nitrogen was found to be the limiting nutrient for primary production in the upper slough. Tidal observations indicated fresh water of high nutrient concentration consistently entered the harbor from fresh water sources to the south. This source water had a probable phosphate concentration of 40 to 60 ug-at/l and seasonally varying P:N ratio of 1:16 and 1:5 during the winter and summer respectively. Net production and respiration rates are calculated from diurnal variations in dissolved oxygen levels observed in upper Elkhorn Slough. Changes in phosphate associated with the variations in oxygen was close to the accepted ratio of 1:276 by atoms. Document is 88 pages.
Resumo:
Several local groups have come together for this project to addresses water quality concerns in the Gabilan Watershed – also known as the Reclamation Ditch Watershed (Fig. 1.1). These are Moss Landing Marine Laboratories (MLML), the Resource Conservation District of Monterey County (RCDMC), Central Coast Watershed Studies (CCoWS), Return of the Natives (RON), Community Alliance with Family Farmers (CAFF), and Coastal Conservation and Research (CC&R). The primary goal is to reduce non-point source pollution – particularly suspended sediment, nutrients, and pesticides – and thereby improve near-shore coastal waters of Moss Landing Harbor and the Monterey Bay. (Document contains 33 pages)
Resumo:
Vancouver Lake, located adjacent to the Columbia River and just north of the Vancouver-Portland metropolitan area, is a "dying" lake. Although all lakes die naturally in geologic time through the process of eutrophication,* Vancouver Lake is dying more rapidly due to man's activities and due to the resultant increased accumulation of sediment, chemicals, and wastes. Natural eutrophication takes thousands of years, whereas man-made modifications can cause the death of a lake in decades. Vancouver Lake does, however, have the potential of becoming a valuable water resource asset for the area, due particularly to its location near the Columbia River which can be used as a source of "flushing" water to improve the quality of Vancouver Lake. (Document pdf contains 59 pages) Community interest in Vancouver Lake has waxed and waned. Prior to World War II, there were relatively few plans for discussions about the Lake and its surrounding land area. A plan to drain the Lake for farming was prohibited by the city council and county commissioners. Interest increased in 1945 when the federal government considered developing the Lake as a berthing harbor for deactivated ships at which time a preliminary proposal was prepared by the City. The only surface water connection between Vancouver Lake and the Columbia River, except during floods, is Lake River. The Lake now serves as a receiving body of water for Lake River tidal flow and surface flow from creeks and nearby land areas. Seasonally, these flows are heavily laden with sediment, septic tank drainage, fertilizers and drainage from cattle yards. Construction and gravel pit operations increase the sediment loads entering the Lake from Burnt Bridge Creek and Salmon Creek (via Lake River by tidal action). The tidal flats at the north end of Vancouver Lake are evidence of this accumulation. Since 1945, the buildup of sediment and nutrients created by man's activities has accelerated the growth of the large water plants and algae which contribute to the degeneration of the Lake. Flooding from the Columbia River, as in 1968, has added to the deposition in Vancouver Lake. The combined effect of these human and natural activities has changed Vancouver Lake into a relatively useless body of shallow water supporting some wildlife, rough fish, and shallow draft boats. It is still pleasant to view from the hills to the east. Because precipitation and streamflow are the lowest during the summer and early fall, water quantity and quality conditions are at their worst when the potential of the Lake for water-based recreation is the highest. Increased pollution of the Lake has caused a larger segment of the community to become concerned. Land use and planning studies were undertaken on the Columbia River lowlands and a wide variety of ideas were proposed for improving the quality of the water-land environment in order to enhance the usefulness of the area. In 1966, the College of Engineering Research Division at Washington State University (WSU0 in Pullman, Washington, was contacted by the Port of Vancouver to determine possible alternatives for restoring Vancouver Lake. Various proposals were prepared between 1966 and 1969. During the summer and fall of 1967, a study was made by WSU on the existing water quality in the Lake. In 1969, the current studies were funded to establish a data base for considering a broad range of alternative solutions for improving the quantity and quality of Vancouver Lake. Until these studies were undertaken, practically no data on a continuous nature were available on Vancouver Lake, Lake River, or their tributaries. (Document pdf contains 59 pages)
Resumo:
CONTENTS: Seaweed culture and farmer incomes in Bekasi, Indonesia, by A. Mauksit L. Maala and Aniza Suspita. Significant change for a self-help group, by Nguyen Song Ha. Conflict over fishing in Jharkhand, by Ashish Kumar. Two worlds across a highway, by William Savage. Critical steps in preparing coastal communities for effective policy changes, by Josephine P. Savaris. New guidelines on data collection and iniormation sharing for co-management, by Charlotte Howard.
Resumo:
INTRODUCTION: This report summarizes the results of NOAA's sediment toxicity, chemistry, and benthic community studies in the Chesapeake Bay estuary. As part of the National Status and Trends (NS&T) Program, NOAA has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are viewed as important goals of coastal resource management. Benthic community studies have a history of use in regional estuarine monitoring programs and have been shown to be an effective indicator for describing the extent and magnitude of pollution impacts in estuarine ecosystems, as well as for assessing the effectiveness of management actions. Chesapeake Bay is the largest estuarine system in the United States. Including tidal tributaries, the Bay has approximately 18,694 km of shoreline (more than the entire US West Coast). The watershed is over 165,000 km2 (64,000 miles2), and includes portions of six states (Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia) and the District of Columbia. The population of the watershed exceeds 15 million people. There are 150 rivers and streams in the Chesapeake drainage basin. Within the watershed, five major rivers - the Susquehanna, Potomac, Rappahannock, York and James - provide almost 90% of the freshwater to the Bay. The Bay receives an equal volume of water from the Atlantic Ocean. In the upper Bay and tributaries, sediments are fine-grained silts and clays. Sediments in the middle Bay are mostly made of silts and clays derived from shoreline erosion. In the lower Bay, by contrast, the sediments are sandy. These particles come from shore erosion and inputs from the Atlantic Ocean. The introduction of European-style agriculture and large scale clearing of the watershed produced massive shifts in sediment dynamics of the Bay watershed. As early as the mid 1700s, some navigable rivers were filled in by sediment and sedimentation caused several colonial seaports to become landlocked. Toxic contaminants enter the Bay via atmospheric deposition, dissolved and particulate runoff from the watershed or direct discharge. While contaminants enter the Bay from several sources, sediments accumulate many toxic contaminants and thus reveal the status of input for these constituents. In the watershed, loading estimates indicate that the major sources of contaminants are point sources, stormwater runoff, atmospheric deposition, and spills. Point sources and urban runoff in the Bay proper contribute large quantities of contaminants. Pesticide inputs to the Bay have not been quantified. Baltimore Harbor and the Elizabeth River remain among the most contaminated areas in the Unites States. In the mainstem, deep sediment core analyses indicate that sediment accumulation rates are 2-10 times higher in the northern Bay than in the middle and lower Bay, and that sedimentation rates are 2-10 times higher than before European settlement throughout the Bay (NOAA 1998). The core samples show a decline in selected PAH compounds over the past several decades, but absolute concentrations are still 1 to 2 orders of magnitude above 'pristine' conditions. Core data also indicate that concentrations of PAHs, PCBs and, organochlorine pesticides do not demonstrate consistent trends over 25 years, but remain 10 times lower than sediments in the tributaries. In contrast, tri-butyl-tin (TBT) concentrations in the deep cores have declined significantly since it=s use was severely restricted. (PDF contains 241 pages)
Resumo:
Summary: The offshore shelf and canyon habitats of the OCNMS (Fig. 1) are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary. To begin addressing this issue, an initial pilot survey was conducted June 1-12, 2004 at six sites in offshore waters of the OCNMS (Fig. 2, average depths of 147-265 m) to explore for the presence of deep-sea coral/sponge assemblages and to look for evidence of potential anthropogenic impacts in these critical habitats. The survey was conducted on the NOAA Ship McARTHUR-II using the Navy’s Phantom DHD2+2 remotely operated vehicle (ROV), which was equipped with a video camera, lasers, and a manipulator arm for the collection of voucher specimens. At each site, a 0.1-m2 grab sampler also was used to collect samples of sediments for the analysis of macroinfauna (> 1.0 mm), total organic carbon (TOC), grain size, and chemical contaminants. Vertical profiles of salinity, dissolved oxygen (DO), temperature, and pressure were recorded at each site with a small SeaCat conductivity-temperature-depth (CTD) profiler. Niskin bottles attached to the CTD also obtained near-bottom water samples in support of a companion study of microbial indicators of coral health and general ecological condition across these sites. All samples except the sediment-contaminant samples are being analyzed with present project funds. Original cruise plans included a total of 12 candidate stations to investigate (Fig. 3). However, inclement weather and equipment failures restricted the sampling to half of these sites. In spite of the limited sampling, the work completed was sufficient to address key project objectives and included several significant scientific observations. Foremost, the cruise was successful in demonstrating the presence of target deepwater coral species in these waters. Patches of the rare stony coral Lophelia pertusa, more characteristic of deepwater coral/sponge assemblages in the North Atlantic, were observed for the first time in OCNMS at a site in 271 meters of water. A large proportion of these corals consisted of dead and broken skeletal remains, and a broken gorgonian (soft coral) also was observed nearby. The source of these disturbances is not known. However, observations from several sites included evidence of bottom trawl marks in the sediment and derelict fishing gear (long lines). Preliminary results also support the view that these areas are important reservoirs of marine biodiversity and of value as habitat for demersal fishes. For example, onboard examination of 18 bottom-sediment grabs revealed benthic infaunal species representative of 14 different invertebrate phyla. Twenty-eight species of fishes from 11 families, including 11 (possibly 12) species of ommercially important rockfishes, also were identified from ROV video footage. These initial discoveries have sparked considerable interests in follow-up studies to learn more about the spatial extent of these assemblages and magnitude of potential impacts from commercial-fishing and other anthropogenic activities in the area. It is essential to expand our knowledge of these deep-sea communities and their vulnerability to potential environmental risks in order to determine the most appropriate management strategies. The survey was conducted under a partnership between NOAA’s National Centers for Coastal Ocean Science (NCCOS) and National Marine Sanctuary Program (NMSP) and included scientists from NCCOS, OCNMS, and several other west-coast State, academic, private, and tribal research institutions (see Section 4 for a complete listing of participating scientists). (PDF contains 20 pages)
Resumo:
As a component of a three-year cooperative effort of the Washington State Department of Ecology and the National Oceanic and Atmospheric Administration, surficial sediment samples from 100 locations in southern Puget Sound were collected in 1999 to determine their relative quality based on measures of toxicity, chemical contamination, and benthic infaunal assemblage structure. The survey encompassed an area of approximately 858 km2, ranging from East and Colvos Passages south to Oakland Bay, and including Hood Canal. Toxic responses were most severe in some of the industrialized waterways of Tacoma’s Commencement Bay. Other industrialized harbors in which sediments induced toxic responses on smaller scales included the Port of Olympia, Oakland Bay at Shelton, Gig Harbor, Port Ludlow, and Port Gamble. Based on the methods selected for this survey, the spatial extent of toxicity for the southern Puget Sound survey area was 0% of the total survey area for amphipod survival, 5.7% for urchin fertilization, 0.2% for microbial bioluminescence, and 5- 38% with the cytochrome P450 HRGS assay. Measurements of trace metals, PAHs, PCBs, chlorinated pesticides, other organic chemicals, and other characteristics of the sediments, indicated that 20 of the 100 samples collected had one or more chemical concentrations that exceeded applicable, effects-based sediment guidelines and/or Washington State standards. Chemical contamination was highest in eight samples collected in or near the industrialized waterways of Commencement Bay. Samples from the Thea Foss and Middle Waterways were primarily contaminated with a mixture of PAHs and trace metals, whereas those from Hylebos Waterway were contaminated with chlorinated organic hydrocarbons. The remaining 12 samples with elevated chemical concentrations primarily had high levels of other chemicals, including bis(2-ethylhexyl) phthalate, benzoic acid, benzyl alcohol, and phenol. The characteristics of benthic infaunal assemblages in south Puget Sound differed considerably among locations and habitat types throughout the study area. In general, many of the small embayments and inlets throughout the study area had infaunal assemblages with relatively low total abundance, taxa richness, evenness, and dominance values, although total abundance values were very high in some cases, typically due to high abundance of one organism such as the polychaete Aphelochaeta sp. N1. The majority of the samples collected from passages, outer embayments, and larger bodies of water tended to have infaunal assemblages with higher total abundance, taxa richness, evenness, and dominance values. Two samples collected in the Port of Olympia near a superfund cleanup site had no living organisms in them. A weight-of-evidence approach used to simultaneously examine all three “sediment quality triad” parameters, identified 11 stations (representing 4.4 km2, 0.5% of the total study area) with sediment toxicity, chemical contamination, and altered benthos (i.e., degraded sediment quality), 36 stations (493.5 km2, 57.5% total study area) with no toxicity or chemical contamination (i.e., high sediment quality), 35 stations (274.1 km2, 32.0% total study area) with one impaired sediment triad parameter (i.e., intermediate/high sediment quality), and 18 stations (85.7km2, 10.0% total study area) with two impaired sediment parameters (i.e., intermediate/degraded quality sediments). Generally, upon comparison, the number of stations with degraded sediments based upon the sediment quality triad of data was slightly greater in the central Puget Sound than in the northern and southern Puget Sound study areas, with the percent of the total study area degraded in each region decreasing from central to north to south (2.8, 1.3 and 0.5%, respectively). Overall, the sediments collected in Puget Sound during the combined 1997-1999 surveys were among the least contaminated relative to other marine bays and estuaries studied by NOAA using equivalent methods. (PDF contains 351 pages)
Resumo:
Forward: Looe Key National Marine Sanctuary (LKNMS) was designated in 1981 to protect and promote the study, teaching, and wise use of the resources of Looe Key Sanctuary (Plate A). In order to wisely manage this valuable resource, a quantitative resource inventory was funded by the Sanctuary Programs Division (SPD), Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration (NOAA) in cooperation with the Southeast Fisheries Center, National Marine Fisheries Service, NOAA; the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), University of Miami; the Fisher Island Laboratory, United States Geological Survey; and the St. Petersburg Laboratory, State of Florida Department of Natural Resources. This report is the result of this cooperative effort. The objective of this study was to quantitatively inventory selected resources of LKNMS in order to allow future monitoring of changes in the Sanctuary as a result of human or natural processes. This study, referred to as Phase I, gives a brief summary of past and present uses of the Sanctuary (Chapter 2); and describes general habitat types (Chapter 3), geology and sediment distribution (Chapter 4), coral abundance and distribution (Chapter 5), the growth history of the coral Montastraea annularis (Chapter 6), reef fish abundance and distribution (Chapter 7), and status of selected resources (Chapter 8). An interpretation of the results of the survey are provided for management consideration (Chapter 9). The results are expected to provide fundamental information for applied management, natural history interpretation, and scientific research. Numerous photographs and illustrations were used to supplement the report to make the material presented easier to comprehend (Plate B). We anticipate the information provided will be used by managers, naturalists, and the general public in addition to scientists. Unless otherwise indicated, all photographs were taken at Looe Key Reef by Dr. James A. Bohnsack. The top photograph in Plate 7.8 was taken by Michael C. Schmale. Illustrations were done by Jack Javech, NMFS. Field work was initiated in May 1983 and completed for the most part by October 1983 thanks to the cooperation of numerous people and organizations. In addition to the participating agencies and organizations we thank the Newfound Harbor Marine Institute and the Division of Parks and Recreation, State of Florida Department of Natural Resources for their logistical support. Special thanks goes to Billy Causey, the Sanctuary Manager, for his help, information, and comments. We thank in alphabetical order: Scott Bannerot, Margie Bastian, Bill Becker, Barbara Bohnsack, Grant Beardsley, John Halas, Raymond Hixon, Irene Hooper, Eric Lindblad, and Mike Schmale. We dedicate this effort to the memory of Ray Hixon who participated in the study and who loved Looe Key. (PDF contains 43 pages)