39 resultados para Capacity Expansion
Resumo:
A brief review of the status of the world fisheries is presented with emphasis on the differences between catches (= landings + bycatch), biological production of fish, and predation (= production - catches). The ECOPATH II approach implemented as a new, Windows-based software is then shown to allow construction of a stratified world model accoutinng for global catches, production of and predation on fishes, and thus improved estimates of global potentials. A newly initiated, cooperative project is described through which the foundation for such a global model could be constructed, based on a stratified database with more than 100 trophic models. Collaborators are invited to join in this, and will be assisted in constructing models covering their areas of interest.
Resumo:
This paper describes the expansion of improved-extensive shrimp (Penaeus monodon) farming in the Mekong Delta, southern Vietnam, emphasizing management decisions, technological constraints and economics.
Resumo:
ABSTRACT—Bycatch mortality of Pacific halibut, Hippoglossus stenolepis, in nontarget fisheries is composed primarily of immature fish, and substantial reductions in yield to directed halibut fisheries result from this bycatch. Distant-water bottomtrawl fleets operating off the North American coast, beginning in the mid 1960’s, experienced bycatch mortality of over 12,000 t annually. Substantial progress on reducing this bycatch was not achieved until the of extension fisheries jurisdictions by the United States and Canada in 1977. Bycatch began to increase again during the expansion of domestic catching capacity for groundfish, and by the early 1990’s it had returned to levels seen during the period of foreign fishing. Collaborative action by Canada and the United States through the International Pacific Halibut Commission has resulted in substantial reductions in bycatch mortality in some areas. Methods of control have operated at global, fleet, and individual vessel levels. We evaluate the hierarchy of effectiveness for these control measures and identify regulatory needs for optimum effects. New monitoring technologies offer the promise of more cost-effective approaches to bycatch reduction.
Resumo:
Due to a lack of data on vessel costs, earnings, and input use, many of the capacity assessment models developed in the economics literature cannot be applied in U.S. fisheries. This incongruity between available data and model requirements underscores the need for developing applicable methodologies. This paper presents a means of assessing fishing capacity and utilization (for both vessels and fish stocks) with commonly available data, while avoiding some of the shortcomings associated with competing “frontier” approaches (such as data envelopment analys
Resumo:
Fish processing and quality control in Malawi are still poorly developed. Traditional fish processing methods are widely employed resulting in considerable post-harvest losses. One of the major challenges to steady and sustainable development in fish processing and quality management is the lack of adequately trained personel. This is directly reflected in poor institutional capacity. This project analyses the situation in fish processing and quality management in Malawi to identify gaps that require improvement. Specifically, the project assesses the role of training institutions in Malawi in capacity building for fish processing and quality management. The institution under discussion in this project is the Aquaculture and Fisheries Science Department at Bunda College of Agriculture, Malawi which is responsible for training students in aquaculture and fisheries science at the undergraduate level.Improvement in the teaching of fish processing and quality management in the Department of Aquaculture and Fisheries Science was identified as the major gap requiring action. The current teaching syllabus was thus analysed to identify weak areas. In conclusion, the project developed (as the major output) a teaching handbook for the Department of Aquaculture and Fisheries Science.
Resumo:
The priority management goal of the National Marine Sanctuaries Program (NMSP) is to protect marine ecosystems and biodiversity. This goal requires an understanding of broad-scale ecological relationships and linkages between marine resources and physical oceanography to support an ecosystem management approach. The Channel Islands National Marine Sanctuary (CINMS) is currently reviewing its management plan and investigating boundary expansion. A management plan study area (henceforth, Study Area) was described that extends from the current boundary north to the mainland, and extends north to Point Sal and south to Point Dume. Six additional boundary concepts were developed that vary in area and include the majority of the Study Area. The NMSP and CINMS partnered with NOAA’s National Centers for Coastal Ocean Science Biogeography Team to conduct a biogeographic assessment to characterize marine resources and oceanographic patterns within and adjacent to the sanctuary. This assessment includes a suite of quantitative spatial and statistical analyses that characterize biological and oceanographic patterns in the marine region from Point Sal to the U.S.-Mexico border. These data were analyzed using an index which evaluates an ecological “cost-benefit” within the proposed boundary concepts and the Study Area. The sanctuary resides in a dynamic setting where two oceanographic regimes meet. Cold northern waters mix with warm southern waters around the Channel Islands creating an area of transition that strongly influences the regions oceanography. In turn, these processes drive the biological distributions within the region. This assessment analyzes bathymetry, benthic substrate, bathymetric life-zones, sea surface temperature, primary production, currents, submerged aquatic vegetation, and kelp in the context of broad-scale patterns and relative to the proposed boundary concepts and the Study Area. Boundary cost-benefit results for these parameters were variable due to their dynamic nature; however, when analyzed in composite the Study Area and Boundary Concept 2 were considered the most favorable. Biological data were collected from numerous resource agencies and university scientists for this assessment. Fish and invertebrate trawl data were used to characterize community structure. Habitat suitability models were developed for 15 species of macroinvertebrates and 11 species of fish that have significant ecological, commercial, or recreational importance in the region and general patterns of ichthyoplankton distribution are described. Six surveys of ship and plane at-sea surveys were used to model marine bird diversity from Point Arena to the U.S.-Mexico border. Additional surveys were utilized to estimate density and colony counts for nine bird species. Critical habitat for western snowy plover and the location of California least tern breeding pairs were also analyzed. At-sea surveys were also used to describe the distribution of 14 species of cetaceans and five species of pinnipeds. Boundary concept cost-benefit indices revealed that Boundary Concept 2 and the Study Area were most favorable for the majority of the species-specific analyses. Boundary Concept 3 was most favorable for bird diversity across the region. Inadequate spatial resolution for fish and invertebrate community data and incompatible sampling effort information for bird and mammal data precluded boundary cost-benefit analysis.
Resumo:
Southeast Bering Sea Carrying Capacity (SEBSCC, 1996–2002) was a NOAA Coastal Ocean Program project that investigated the marine ecosystem of the southeastern Bering Sea. SEBSCC was co-managed by the University of Alaska Fairbanks, NOAA Alaska Fisheries Science Center, and NOAA Pacific Marine Environmental Laboratory. Project goals were to understand the changing physical environment and its relationship to the biota of the region, to relate that understanding to natural variations in year-class strength of walleye pollock (Theragra chalcogramma), and to improve the flow of ecosystem information to fishery managers. In addition to SEBSCC, the Inner Front study (1997–2000), supported by the National Science Foundation (Prolonged Production and Trophic Transfer to Predators: Processes at the Inner Front of the S.E. Bering Sea), was active in the southeastern Bering Sea from 1997 to 1999. The SEBSCC and Inner Front studies were complementary. SEBSCC focused on the middle and outer shelf. Inner Front worked the middle and inner shelf. Collaboration between investigators in the two programs was strong, and the joint results yielded a substantially increased understanding of the regional ecosystem. SEBSCC focused on four central scientific issues: (1) How does climate variability influence the marine ecosystem of the Bering Sea? (2) What determines the timing, amount, and fate of primary and secondary production? (3) How do oceanographic conditions on the shelf influence distributions of fish and other species? (4) What limits the growth of fish populations on the eastern Bering Sea shelf? Underlying these broad questions was a narrower focus on walleye pollock, particularly a desire to understand ecological factors that affect year-class strength and the ability to predict the potential of a year class at the earliest possible time. The Inner Front program focused on the role of the structural front between the well-mixed waters of the coastal domain and the two-layer system of the middle domain. Of special interest was the potential for prolonged post-spring-bloom production at the front and its role in supporting upper trophic level organisms such as juvenile pollock and seabirds. Of concern to both programs was the role of interannual and longer-term variability in marine climates and their effects on the function of sub-arctic marine ecosystems and their ability to support upper trophic level organisms.
Resumo:
In the present study, an attempt was made to explore the benefits of polyphosphate for enhancement of dried prawn (Parapenaeopsis stylifera) quality commercially known as "sode" in Maharashtra coast. Dip treatment in polyphosphate solution at different concentrations (viz., 3, 5, 7 and 10%) was given to pealed and no deveined P. stylifera for different durations (viz., 1, 2, 3, 4 and 5 min). Treated prawns were dried and subjected to rehydration capacity test and organoleptic evaluation. Among the different treatments, rehydration capacity was found to increase with the increased duration and concentration of treatment. Tiny prawns treated with sodium tripolyphosphate solution at the rate of 5% concentration for 5 minutes showed an increase in pH from acidic to alkaline, and had better quality with respect to rehydration capacity and textural attributes as compared to other concentrations and durations of polyphosphate treatment.