42 resultados para Brown recluse spider
Resumo:
The angling season for non-migratory brown trout, in the Environment Agency (EA) North West Region, runs from March 15th to September 30th. Each year, large numbers of farm reared brown trout are stocked into the rivers of the North West Region's Central Area. In 1994, approximately 20,000 brown trout were introduced into the River systems of the Lune, Wyre and Ribble by local angling clubs and fishery owners. Most of these fish were stocked at a length greater than that defined by local byelaws as the takeable size (200mm). Introductions are made to supplement the existing wild brown trout populations within the river and increase the probability of an angler catching a fish. Stocking with fish of a sufficient length allows the successful angler to remove the catch for their own use. In this way, stretches of the rivers are effectively managed as "put and take" fisheries for brown trout. A number of brown trout fingerlings are also introduced each year by angling clubs and fishery owners. These are stocked with the expectation that the fish will survive in the river to grow, over-winter, and eventually attain a takable size with an increased degree of "wildness". The lower cost of fingerlings, as opposed to trout of a takable length, makes their introduction more attractive to angling clubs since a greater number can be stocked for a given cost. Although the practise of stocking brown trout has occurred for many years in the Central Area, there is little information of its success in terms of increasing anglers catches, or the survival offish introduced. This study was initiated to determine the recapture rates by angling of brown trout following their introduction into a river fishery. The information gained from this study can then be used to give guidance to angling clubs and fishery owners on the optimal strategies for stocking fish.
Resumo:
Brown shrimp (Farfantepenaeus aztecus) are abundant along the Louisiana coast, a coastline that is heavily influenced by one of the world’s largest rivers, the Mississippi River. Stable carbon, nitrogen, and sulfur (CNS) isotopes of shrimp and their proventriculus (stomach) contents were assayed to trace riverine support of estuarine-dependent brown shrimp. Extensive inshore and of fshore collections were made in the Louisiana coastal zone during 1999–2006 to document shrimp movement patterns across the bay and shelf region. Results showed an unexpectedly strong role for nursery areas in the river delta in supporting the offshore fishery, with about 46% of immigrants to offshore regions arriving from riverine marshes. Strong river influences also were evident offshore, where cluster analysis of combined CNS isotope data showed three regional station groups related to river inputs. Two nearer-river mid-shelf station groups showed isotope values indicating river fertilization and productivity responses in the benthic shrimp food web, and a deeper offshore station group to the south and west showed much less river inf luence. At several mid-shelf stations where hypoxia is common, shrimp were anomalously 15N depleted versus their diets, and this d15N difference or mismatch may be useful in monitoring shrimp movement responses to hypoxia.
Resumo:
Size distribution within re- ported landings is an important aspect of northern Gulf of Mexico penaeid shrimp stock assessments. It reflects shrimp population characteristics such as numerical abundance of various sizes, age structure, and vital rates (e.g. recruitment, growth, and mortality), as well as effects of fishing, fishing power, fishing practices, sampling, size-grading, etc. The usual measure of shrimp size in archived landings data is count (C) the number of shrimp tails (abdomen or edible portion) per pound (0.4536 kg). Shrimp are marketed and landings reported in pounds within tail count categories. Statistically, these count categories are count class intervals or bins with upper and lower limits expressed in C. Count categories vary in width, overlap, and frequency of occurrence within the landings. The upper and lower limits of most count class intervals can be transformed to lower and upper limits (respectively) of class intervals expressed in pounds per shrimp tail, w, the reciprocal of C (i.e. w = 1/C). Age based stock assessments have relied on various algorithms to estimate numbers of shrimp from pounds landed within count categories. These algorithms required un- derlying explicit or implicit assumptions about the distribution of C or w. However, no attempts were made to assess the actual distribution of C or w. Therefore, validity of the algorithms and assumptions could not be determined. When different algorithms were applied to landings within the same size categories, they produced different estimates of numbers of shrimp. This paper demonstrates a method of simulating the distribution of w in reported biological year landings of shrimp. We used, as examples, landings of brown shrimp, Farfantepenaeus aztecus, from the northern Gulf of Mexico fishery in biological years 1986–2006. Brown shrimp biological year, Ti, is defined as beginning on 1 May of the same calendar year as Ti and ending on 30 April of the next calendar year, where subscript i is the place marker for biological year. Biological year landings encompass most if not all of the brown shrimp life cycle and life span. Simulated distributions of w reflect all factors influencing sizes of brown shrimp in the landings within a given biological year. Our method does not require a priori assumptions about the parent distributions of w or C, and it takes into account the variability in width, overlap, and frequency of occurrence of count categories within the landings. Simulated biological year distributions of w can be transformed to equivalent distributions of C. Our method may be useful in future testing of previously applied algorithms and development of new estimators based on statistical estimation theory and the underlying distribution of w or C. We also examine some applications of biological year distributions of w, and additional variables derived from them.
Resumo:
Simulations based on a yield-per-recruit model were performed to analyze the impact ofg rowth overfishing on brown shrimp, Penaeus aztecus, and to assess the effects of a closed season inshore and offshore of the Mexican States of Tamaulipas and Veracruz. Closure of both the inshore and offshore fisheries could enhance cohort yield by more than 300%. Cohon yield enhancement would be only about 60-80% if only the offshore season were closed. The closed season of 1993 gave better results as it covered a larger part of the brown shrimp peak recruitment period. Catch per unit of effort (CPUE) after closure in 1993, compared with 1994, was 2.4 times higher than the mean CPUE of the month. Total annual offshore yield increased 72% in 1993 (3,800 metric tons (t)) and 10% in 1994 (506 t) with respect to the mean annual offshore catch during the 10-year period prior to the 1993 closure. Simulation results could help identify alternatives that permit the coexistence of the inshore and offshore fisheries while maintaining high profitability of the brown shrimp fishery.
Resumo:
This is the Brown trout habitat assessment on the River Bela catchment produced by the Environment Agency North West in 1997. The Environment Agency (EA) and its predecessor the National Rivers Authority undertook strategic fish stock assessments in 1992 and 1995 on the River Bela catchment. These surveys found low numbers of brown trout {Salmo trutta) at some sites. Following this, habitat evaluation assessments were undertaken on the eleven poorest sites Factors probably responsible for declining trout populations on the three main tributaries of the Bela catchment include: Overgrazing by farm stock; Lack of suitable cover for parr; the absence of suitable spawning areas; existing potential of certain areas within the catchment not being utilised, due to poor dispersal. Habitat Improvement Schemes (H.I.S) are discussed and prioritised.