194 resultados para Bivalvia sp., larvae
Resumo:
This study gives an account of distributional patterns of Brachyuran larvae in the Manora Channel from January to November 1995. The planktonic sampling was carried out during day time from surface and sub-surface waters of station I and II (certain sites) at shallow depths (15'-20') using Bongo net of 300 micron mesh size. In all 19527 larvae were obtained through fourteen sampling. These brachyuran larvae belonged to nine families and twenty four species: Ebalia sagittifera, Philyra sp., Philyra scabriuscula (Leucosiidae), Schizophyris aspera (Majidae), Charybdis annulata, Charybdis sp. (Portunidae), Xanthid sp A., B. and C. (Xanthidae), Pilumnus karachiensis, Pilumnus sp. (Pilumnidae), Menippe rumphii (Oziidae), Pinnotheres sp. A, and B. (Pinnotheridae), Nasima dotilliforme, Serenella indica, Macrophthalmus (Mareotis) depressus, Macrophthalmus sp., Dotilla blanfordi, Ocypodid sp. A., B. and C. (Ocypodidae), Metopograpsus thukuhar and Clistocoeloma lanatum (Grapsidae). This study is based on identification, occurrence, distributional patterns along Manora Channel and percentage composition of brachyuran larvae in the area, collected during 1995.
Resumo:
A study on the reproductive biology of Amblema neislerii, Elliptoideus sloatianus, Lampsilis subangulata, Medionidus penicillatus, and Pleurobema pyriforme was conducted from May 1995 to May 1997. The objectives of this study were as follows: 1) determine period of gravidity for each of the five mussel species, 2) determine host fish via laboratory experiments, 3) test whether unionid glochidia will transform on a nonidingenous fish, and 4) describe the glochidial morphology for each of the five mussel species using a scanning electron microscope. Amblema neislerii are tachytictic breeders and were found with mature glochidia in May. Elliptoideus sloatianus are tachytictic breeders and were found with mature glochidia from late February to early April. Lampsilis subangulata are bradytictic breeders and were found with mature glochidia from December to August. Superconglutinates were released by L. subangulata from late May to early July. Medionidus penicillatus are bradytictic breeders and were found with mature glochidia in November and February to April. Pleurobema pyriforme are tachytictic breeders and were found with mature glochidia from March to July. The following fish species served as hosts for A. neislerii: Notropis texanus, Lepomis macrochirus, L. microlophus, Micropterus salmoides, and Percina nigrofasciata. The following fish species served as hosts for E. sloatianus: Gambusia holbrooki, Poecilia reticulata, and P. nigrofasciata. The following fish species served as hosts for L. subangulata: G. holbrooki, P. reticulata, L. macrochirus, Micropterus punctulatus, and M. salmoides. The following fish species served as hosts for M. penicillatus: G. holbrooki, P. reticulata, Etheostoma edwini, and P. nigrofasciata. The following fish species served as hosts for P. pyriforme: Pteronotropis hypselopterus, G. holbrooki, and P. reticulata. Poecilia reticulata, a nonindigenous fish, served as a host for E. sloatianus, L. subangulata, M. penicillatus, and P. pyriforme. (76 page document)
Resumo:
(PDF tiene 47 paginas.)
Resumo:
The impact of mechanical stresses upon ichthyoplankton entrained in power plant cooling systems has long been considered negligible. Arguments and evidence exist, however, to show that such a supposition is not universally true, especially in nuclear power plants. The mechanisms of mechanical damage can be detailed in terms of pressure change, acceleration, and shear stress with in the fluid flow field. Laboratory efforts to quantify the effects of mechanical stress have been very sparse. A well-planned bioassay is urgently needed. (PDF has 11 pages.)
Effects of shear on eggs and larvae of striped bass, morone saxatilis, and white perch, M. americana
Resumo:
Shear stress, generated by water movement, can kill fish eggs and larvae by causing rotation or deformation. Through the use of an experimental apparatus, a series of shear (as dynes/cm2)-mortality equations for fixed time exposures were generated for striped bass and white perch eggs and larvae. Exposure of striped bass eggs to a shear level of 350 dynes/cm2 kills 36% of the eggs in 1 min; 69% in 2 min, and 88% in 4 min; exposure of larvae to 350 dynes/cm2 kills 9.3% in 1 min, 30.0% in 2 min, and 68.1% in 4 min. A shear level of 350 dynes/cm2 kills 38% of the white perch eggs in 1 min, 41% in 2 min, 89% in 5 min, 96% in 10 min, and 98% in 20 min. A shear level of 350 dynes/cm2 applied to white perch larvae destroys 38% of the larvae in 1 min, 52% in 2 min, and 75% in 4 min. Results are experimentally used in conjunction with the determination of shear levels in the Chesapeake and Delaware Canal and ship movement for the estimation of fish egg and larval mortalities in the field.
Resumo:
ENGLISH: Hitherto the only investigation dealing with the food and feeding of the larvae of the northern anchovy, Engraulis mordax Girard, was that of Arthur (1956). His main consideration was, however, with the Pacific sardine, Sardinops caerulea (Girard), and his work on the anchovy can only be considered preliminary. The present investigation is a continuation of Arthur's work on the food of the larval northern anchovy. SPANISH:El único trabajo publicado hasta ahora que trata sobre el alimento y nutrición de las larvas de la anchoa norteña, Engraulis mordax Girard, es el de Arthur (1956); pero su objeto principal fué la sardina del Pacifico, Sardinops caendea (Girard), y el estudio dedicado a la anchoa solo puede considerarse como preliminar. La presente investigación es una continuación del estudio de Arthur sobre el alimento de las larvas de la anchoa norteña.
Resumo:
Mytilus californianus (Mollusca: Bivalvia), the California marine mussel, occurs in intertidal populations so derise that they are referred to as "Mussel beds." The mussel beds range in physical complexity from structurally simple, essentially mono-layered assemblages, to structurally complex, multi-layered assemblages. The internal environment within the bed varies accordingly. The mussel bed provides either directly or indirectly, habitat, food and shelter for a large community of associated invertebrates. This study examines the relationship between physical complexity of the mussel bed habitat and composition of the associated community.
Resumo:
ENGLISH: The anchoveta, Cetengraulis mysticetus (Günther), is an important bait fish used to capture tunas in the Eastern Tropical Pacific Ocean. Contributions to the early life history of this species in the Gulf of Panama were made by Simpson (1959), who was able to identify deductively the planktonic egg of the anchoveta from 10 other anchovy eggs concurrently present. He also reared these planktonic eggs in the laboratory and described the resultant larvae to the age of 48 hours after hatching. Because of the lack of differences among the anchovy larvae, this description does not permit the identification of anchoveta larvae from those of other engraulid species. Furthermore, while adult specimens are easily recognized, up to the present it has not been possible to extend the identification of the juvenile anchoveta to specimens smaller than about 25 mm. The purpose of this study, therefore, was to identify anchoveta from the time of hatching to about 25 mm. SPANISH: La anchoveta, Cetengraulis mysticetus (Günther), es un importante pez de carnada que se emplea en la captura de los atunes en el Océano Pacífico Oriental Tropical. Simpson (1959) logró identificar deductivamente el huevo planctónico de la anchoveta al separarlo de otros diez huevos de anchoas que se encuentran al mismo tiempo, contribuyendo de esta manera a conocer los primeros estados de la historia natural de esta especie en el Golfo de Panamá. El también estableció un criadero en el laboratorio con estos huevos planctónicos y describió las larvas resultantes hasta la edad de 48 horas después de la eclosión. Debido a que no hay diferencias entre las larvas de las anchoas, esta descripción no permite identificar las larvas de la anchoveta de las otras especies de engráulidos. Más aun, a pesar de que los especímenes adultos son fácilmente reconocibles, hasta ahora no ha sido posible identificar la anchoveta juvenil de menos de unos 25 mm. Consecuentemente, el propósito del presente estudio ha sido el de identificar al anchoveta desde el momento de la eclosión hasta que tiene unos 25 mm.
Resumo:
ENGLISH: Knowledge of spawning habits is useful in the elucidation of the life history, ecology and population structure of tropical tunas, and is essential to the sound management of these resources. Until recently, little was known concerning the spawning of tunas, or about the distribution of their larval and juvenile stages, in the Eastern Pacific Ocean. Nichols and Murphy (1944) reported the capture off Colombia of young scombroids ultimately identified as frigate mackerel, Auxis thazard (Schaefer and Marr, 1948a). Fowler (1944) reported the capture off Manzanillo, Mexico of two young tunas, one of which is definitely and the other most likely Neothunnus macropterus (Klawe, 1959). In 1947, young of N. macropterus, K. pelamis, A. thazard and E. lineatus were caught offshore from Central America (Schaefer and Marr, 1948a, 1948b, and Schaefer, 1948). Further collections of young N. macropterus, A. thazard and E. lineatus were made in the same general area in the spring of 1949 (Mead, 1951). In January and February 1955, Clemens (1956) carried Out experiments in rearing young tunas, E. lineatus and A. thazard, in shipboard aquaria, using fish caught off Central America. Matsumoto (1958) reported captures of larval N. macropterus and K. pelamis in the area along the 120th meridian of west longitude. Klawe (1958 and 1961b) reported captures of larval N. macropterus and Auxis from the Revillagigedo Islands. Captures of young Auxis and E. lineatus in the Gulf of Panama in January 1922 during the Dana Expedition have recently been reported by Matsumoto (1959). Capture of juveniles of K. pelamis, E. lineatus and Auxis in the area off tropical Mexico and in the area of outlying islands during the SCOT Expedition has been reported by Klawe (1960a). SPANISH: El conocimiento sobre los hábitos del desove es útil para el esclarecimiento de la historia natural, ecología y estructura de las poblaciones de atunes tropicales, y es esencial para la acertada administración de estos recursos. Hasta hace poco tiempo no se sabía mucho sobre el desove de los atunes o acerca de la distribución de sus larvas y juveniles en el Océano Pacífico Oriental. Nichols y Murphy (1944) informaron sobre la captura frente a Colombia de escómbridos jóvenes últimamente identificados como melva, Auxis thazard (Schaefer y Marr, 1948a). Fowler (1944) también informó sobre la captura de dos atunes jóvenes frente a Manzanillo, México, uno de los cuales era definitivamente Neothunnus macropterus y el otro era lo más probable que también lo fuera (Klawe, 1959). En 1947 se capturaron especímenes juveniles de N. macropterus, K. pelamis, A. thazard y E. lineatus frente a la América Central (Schaefer y Marr, 1948a, 1948b, y Schaefer, 1948). Otras recolecciones de ejemplares jóvenes de N. macropterus, A. thazard y E. lineatus fueron hechas en la misma área general durante la primavera de 1949 (Mead, 1951). En enero y febrero de 1955, Clemens (1956) efectuó experimentos de crianza de atunes jóvenes, E. lineatus y A.. thazard, en acuarios a bordo para lo que empleó peces capturados frente a la América Central. Matsumoto (1958) informó sobre capturas de larvas de N. macropterus y K. pelamis en el área a lo largo del meridiano 120 de longitud oeste. Klawe (1958 y 1961b) ha dado cuenta también de capturas de larvas de N. macropterus y Auxis en las Islas Revillagigedo. Matsumoto (1959) ha informado recientemente acerca de capturas de ejemplares jóvenes de Auxis y E. lineatus en el Golfo de Panamá en enero de 1922 durante la Expedición Dana. Klawe (1960a) informó así mismo que durante la Expedición SCOT se capturaron juveniles de K. pelamis, E. lineatus y Auxis en el área frente a la zona tropical de México y en la región de las islas alejadas del continente.
Resumo:
The abundance and distribution of ichthyoplankton adjacent to live-bottom habitats (rock outcroppings containing rich, sessile invertebrate communities and many species of tropical and subtropical fishes) in open-shelf waters « 55-m isobath) in Onslow Bay, North Carolina, were investigated. Larvae of reef-associated genera, especially the economically important subtropical and tropical members of the families Haemulidae (Haemulon), Lutjanidae (Lutjanus and Rltomboplites), Serranidae (Mycteroperca and Epinephelus), and Sparidae (Calamus and Pagrus) were targeted. Larvae representing 40 families were collected in neuston tows. Commonly collected reef-associated families were Balistidae, Blenniidae (dominated by the reef-associated Parablennius marmoreus) , Mullidae, and Gobiidae. Larvae representing 70 families were collected in subsurface tows. Reef-associated families commonly collected included Apogonidae, Balistidae, Gobiidae, Haemulidae, LutJanidae, Scaridae, and Serranidae. Larval Haemulon sp (p)., Lutjanus sp(p)., and Rltomboplites aurorubens were commonly collected and thus it is likely that these taxa spawn in Onslow Bay and recruit to live-bottom sites within the area. Other families of fishes commonly collected but generally not considered reef-associated included Bothidae, Callionymidae, Carangidae, Clupeidae, Engraulidae, and Ophidiidae. Estuarine-dependent species (e.g. the clupeid Brevoortia tyrannus and the sciaenids Leiostomus xanthurus and Micropogonias undulatus) were an important component of the ichthyoplankton during late fall and winter. The frequent occurrence of larvae from oceanic species (e.g. gonostomatids and myctophids) indicated that Gulf Stream waters had intruded onto the shelf, transporting these larvae to open-shelf waters off North Carolina.(PDF file containes 36 pages.)
Resumo:
About 72 species of Sebastes (Family Scorpaenidae) are found along the eastern Pacific coast of North America, some of which are heavily exploited by both commercial and sport fisheries. Because of the large number of species, the identification of early life stages has progressed slowly. The objectives of this study were 1) to rear the larvae of four species of rockfish (Sebastes mystinus, S. carnatus, S. atrovirens, and S. rastrelliger); and 2) to describe the larvae using morphometric measurements, pigmentation patterns, and head spination. Pigmentation was the most useful feature for identification purposes. Two general patterns were found: 1) a short row of ventral midline melanophores on the tail, and none or very little postero-dorsal pigmentation (S. mystinus); and 2) complete ventral midline pigmentation on the tail, and anterior and postero-dorsal melanophores (S. carnatus, S. atrovirens, and S. rastrelliger). With the exception of very early stages of S. carnatus and S. atrovirens, these species can be readily identified. Morphometric proportions and head spination did not show major differences among species. Because of the great similarities found among species in this genus, descriptions from field studies are uncertain to some extent. Laboratory rearings, although difficult, can at least provide early larvae from known species which allow precise identification as well as an estimation ofvariability of characters (e.g., pigmentation) within and between broods.(PDF file contains 22 pages.)
Resumo:
Larvae of over 50 families of nearshore fishes were taken in oceanic waters about 13 km offshore of the leeward (southwest) coast of Oahu, Hawaii during 1977-78, The five most frequently taken families (Labridae, Parapercidae, Serranidae, Gobiidae, and Carangidae) made up over 50% of the total nearshore larvae. Most other families were taken very infrequently. Comparison of catch data from three types of nets indicated that 1.25-m diameter bongo nets often sampled larvae as well or better than a 3-m Isaacs-Kidd trawl and that smaller, 70-cm diameter bongo nets were often as effective as the larger nets for certain abundant taxa. Only a few taxa showed evidence of seasonal patterns in abundance. Irregular temporal variability in abundance of some taxa may have been related to occasional recent influxes of surface water from closer to shore. Most larvae taken were late preflexion stage or older. Densities of even the most abundant taxa were rarely greater than 0.001 m-3. The nearshore fish larvae were not dominated by taxa with large larvae or with larvae possessing apparent specializations to pelagic existence, Most taxa taken were pelagic spawners as adults, but larvae of demersal spawners were roughly as well represented as demersal spawners are among the nearshore fish fauna. Previous studies of waters closer to shore probably sampled insufficient volumes for any but a few exceptionally abundant taxa. Sampling with volumes filtered of the order of 104-105 m3 will be necessary to determine if the dominant taxa taken by the present study are ever more abundant closer to shore, (PDF file contains 23 pages.)