225 resultados para Basque-Atlantic territory
Resumo:
Identification problems are common for many sharks due to a general lack of meristic characteristics that are typically useful for separating species. Other than number of vertebrae and number and shape of teeth, identifications are frequently based on external features that are often shared among species. Identification problems in the field are most prevalent when live specimens are captured and releasing them with a minimum of stress is a priority (e.g., shark tagging programs). Identifications must be accurate and conducted quickly but this can be challenging, especially if specimens are very active or too large to be landed without physical damage. This field guide was designed primarily for use during field studies and presents a simplified method for identifying the 21 species of western North Atlantic Ocean sharks belonging to the family Carcharhinidae (carcharhinids). To assist with identifications a dichotomous key to Carcharhinidae was developed, and for the more problematic Carcharhinus species (12 species), separation sheets based on important distinguishing features were constructed. Descriptive text and illustrations provided in the species accounts were developed from field observations, photographs, and published references. (PDF file contains 36 pages.)
Resumo:
Paralarval and juvenile cephalopods collected in plankton samples on 21 western North Atlantic cruises were identified and enumerated. The 3731 specimens were assigned to 44 generic and specific taxa. This paper describes their spatial and temporal distributions and their developmental morphology. The smallest paralarvae recognized for a number of species are identified and illustrated. The two most abundant and most frequently collected taxa were identifiable to species based on known systematic characters of young, as well as on distribution of the adults. These were the neritic squids Loligo pealeii and Illex illecebrosus collected north of Cape Hatteras, both valuable fishery resources. Other abundant taxa included two morphotypes of ommastrephids, at least five species of enoploteuthids, two species of onychoteuthids, and unidentified octopods. Most taxa were distributed widely both in time and in space, although some seasonal and mesoscale-spatial patterns were indicated. The taxa that appeared to have distinct seasonal distribution included most of the neritic species and, surprisingly, the young of the bathypelagic cranchiids. In eight seasonal cruises over the continental shelf of the middle U.S. Atlantic states, neritic taxa demonstrated approximately the same seasonal patterns during two consecutive years. Interannual differences in the oceanic taxa collected on the shelf were extreme. The highest abundance and diversity of planktonic cephalopods in the oceanic samples were consistently found in the vicinity of the Gulf Stream. Only eight of the oceanic taxa appeared to have limited areal distributions, compared with twelve taxa that were found throughout the western North Atlantic regions sampled in this study. Many taxa, however, were not collected frequently enough to describe seasonal or spatial patterns. Comparisons with published accounts of other cephalopod surveys indicate both strengths and weaknesses in various sampling techniques for capturing the young of oceanic cephalopods. Enoploteuthids were abundant both in our study and in other studies using midwater trawls in several areas of the North Atlantic. Thus, this family probably is adequately sampled over its developmental range. In contrast, octopoteuthids and chtenopterygiids are rare in collections made by small to medium-sized midwater trawls but are comparatively common in plankton samples. For families that are relatively common in plankton samples, paralarval abundance, derived similarly to the familiar ichthyoplankton surveys of fisheries science, may be the most reliable method of gathering data on distribution and abundance. (PDF file contains 58 pages.)
Resumo:
Sets and catches of Atlantic menhaden, Brevoortia tyrannus, made in 1985-96 by purse-seine vessels from Virginia and North Carolina were studied by digitizing and analyzing Captain's Daily Fishing Reports (CDFR's), daily logs of fishing activities completed by captains of menhaden vessels. 33,674 CDFR's were processed, representing 125,858 purse-seine sets. On average, the fleet made 10,488 sets annually. Virginia vessels made at least one purse-seine set on 67%-83% of available fishing days between May and December. In most years, five was the median number of sets attempted each fishing day. Mean set duration ranged from 34 to 43 minutes, and median catch per set ranged from 15 to 30 metric tons (t). Spotter aircraft assisted in over 83% of sets overall. Average annual catch in Chesapeake Bay (149,500 t) surpassed all other fishing areas, and accounted for 52% of the fleet's catch. Annual catch from North Carolina waters (49,100 t) ranked a distant second. Fishing activity in ocean waters clustered off the Mid-Atlantic states in June-September, and off North Carolina in November-January. Delaware Bay and the New Jersey coast were important alternate fishing grounds during summer. Across all ocean fishing areas, most sets and catch occurred within 3 mi. of shore, but in Chesapeake Bay about half of all fishing activity occurred farther offshore. In Virginia, areas adjacent to fish factories tended to be heavily fished. Recent regulatory initiatives in various coastal states threaten the Atlantic menhaden fleet's access to traditional nearshore fishing grounds. (PDF file contains 26 pages.)
Resumo:
An early establishment of selective breeding programs on Atlantic salmon has been crucial for the success of developing efficient and sustainable salmon farming in Norway. A national selective breeding program was initiated by AKVAFORSK at the beginning of the 1970s, by collecting fertilized eggs from more than 40 Norwegian river populations. Several private selective breeding programs were also initiated in the 1970s and 1980s. While these private programs were initiated using individual selection (i.e. massselection) to genetically improve growth, the national program was designed to gradually include all economically important traits in the breeding objective (i.e. growth, age at sexual maturation, disease resistance and quality traits) using a combined family and within-family selection strategy. Independent of which selection strategy and program design used, it is important to secure and maintain a broad genetic variation in the breeding populations to maximize selection response. It has been documented that genetically improved salmon from the national selective breeding program grow twice as fast as wild Atlantic salmon and require 25 per cent less feed, while salmon representing the private breeding programs all show an intermediate growth performance. As a result of efficient dissemination of genetically improved Atlantic salmon, the Norwegian salmon farming industry has reduced its feed costs by more than US$ 230 million per year! The national selective breeding program on Atlantic salmon was commercialized into a breeding company (AquaGen) in 1992. Five years later, several private companies and the AKVAFORSK Genetics Center (AFGC) established a second breeding company (SalmoBreed) using breeding candidates from one of the private breeding programs. These two breeding companies have similar products, but different strategies on how to organize the breeding program and to disseminate the genetically improved seed to the Norwegian salmon industry. Greater competition has increased the necessity to document the genetic gain obtained from the different programs and to market the economic benefits of farming the genetically improved breeds. Both breeding companies have organized their dissemination to get a sufficient share of the economic benefits in order to sustain and improve their breeding programs.
Resumo:
This three-volume monograph represents the first major attempt in over a century to provide, on regional bases, broad surveys of the history, present condition, and future of the important shellfisheries of North and Central America and Europe. It was about 100 years ago that Ernest Ingersoll wrote extensively about several molluscan fisheries of North America (1881, 1887) and about 100 years ago that Bashford Dean wrote comprehensively about methods of oyster culture in Europe (1893). Since those were published, several reports, books, and pamphlets have been written about the biology and management of individual species or groups ofclosely related mollusk species (Galtsoff, 1964; Korringa, 1976 a, b, c; Lutz, 1980; Manzi and Castagna, 1989; Shumway, 1991). However, nothing has been written during the past century that is comparable to the approach used by Ingersoll in describing the molluscan fisheries as they existed in his day in North America or, for that matter, in Europe. (PDF file contains 224 pages.)
Resumo:
Summer flounder, Paralichthys dentatus, scup, Stenotomus chrysops, and black sea bass, Centropristis striata, cooccur within the Middle Atlantic Bight and off southern New England and are important components of commercial and recreational fisheries. The commercial otter trawl fishery for these species is primarily a winter fishery, whereas the recreational fishery takes place between late spring and autumn. The otter trawl fishery generally targets summer flounder, and less frequently scup, while black sea bass occurs as bycatch. Trips in which all three species were present yielded highest aggregate landings per unit of effort (LPUE) levels and occurred more often than trips landing only one or two species. More than 50% of the trips in the trawl fishery landed at least two of the three species. In contrast, greater than 75% of the recreational landings of each species occurred as a result of trips landing only one species. Differences in the fisheries resulted from the interactions of seasonal changes in species distributions and gear selectivity. (PDF file contains 18 pages.)
Resumo:
This guide was developed to assist with the identification of western North Atlantic grouper species of the genera Alphestes, Cephalopholis, Dermatolepis, Epinephelus, Gonioplectrus, Mycteroperca, and Paranthias. The primary purpose for assembling the guide is for use with projects that deploy underwater video camera systems. The most vital source of information used to develop the guide was an archive of underwater video footage recorded during fishery projects. These video tapes contain 348 hours of survey activity and are maintained at the National Marine Fisheries Service (NMFS), Pascagoula, Mississippi. This footage spans several years (1980-92) and was recorded under a wide variety of conditions depicting diverse habitats from areas of the western North Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. Published references were used as sources of information for those species not recorded on video footage during NMFS projects. These references were also used to augment information collected from video footage to provide broader and more complete descriptions. The pictorial guide presents information for all 25 grouper species reported to occur in the western North Atlantic. Species accounts provide descriptive text and illustrations depicting documented phases for the various groupers. In addition, species separation sheets based on important identification features were constructed to further assist with species identification. A meristic table provides information for specimens captured in conjunction with videoassisted fishery surveys. A computerized version enables guide users to amend, revise, update, or customize the guide as new observations and information become available. (PDF file contains 52 pages.)
Resumo:
Monitoring of the waters of the Middle Atlantic Bight and Gulf of Maine has been conducted by the MARMAP Ships of Opportunity Program since the early 1970's. Presented in this atlas are portrayals of the temporal and spatial patterns of surface and bottom temperature and surface salinity for these areas during the period 1978-1990. These patterns are shown in the form of time-space diagrams for single-year and multiyear (base period) time frames. Each base period figure shows thirteen-year (1978-1990) mean conditions, sample variance in the form of standard deviations of the measured values, and data locations. Each single-year figure displays annual conditions, sampling locations, and departures of annual conditions from the thirteen-year means, expressed as algebraic anomalies and standardized anomalies. (PDF file contains 112 pages.)
Resumo:
Species identifications of Prionotus and Bellator are often difficult under field conditions owing to the large number of species and their overlapping taxonomic characteristics. This key is intended to provide a simplified, accurate means to identify adult searobins greater than 10 cm standard length. All recognized species from the western North Atlantic, the Gulf of Mexico, and Caribbean Sea are included. (PDF file contains 30 pages.)
Resumo:
The estuarine populations of juvenile Atlantic and gulf menhaden (Brevoortia tyrannus and B. patronus) were sampled during two-boat, surface-trawl, abundance surveys extensively conducted in the 1970s. Juvenile Atlantic menhaden were sampled in 39 estuarine streams along the U.S. Atlantic coast from northern Florida into Massachusetts. Juvenile gulf menhaden were sampled in 29 estuarine streams along the Gulf of Mexico from southeast Texas into western Florida. A stratified, two-stage, cluster sampling design was used. Annual estimates of relative juvenile abundance for each species of menhaden were obtained from catch-effort data from the surveys. There were no significant correlations, for either species, between the relative juvenile abundance estimates and fishery-dependent estimates of year-class strength. From 1972 to 1975, the relative abundance of juvenile Atlantic menhaden in north Atlantic estuaries decreased to near zero. (PDF file contains 22 pages.)
Resumo:
The moisture, fat, ash, fatty acid profile, and cholesterol content are reported for cooked and raw fillets from 22 species of finfish found in the Northwest Atlantic. All but nine species had 1%or less fat. Ocean perch and a spring sampling of mackerel and wolffiSh had about 2% fat, followed by yellowfin tuna, whiting, silver hake, butterfish, and a summer -sampling of mackerel and wolffish with a range of 3-7% fat. Herring had a range of 5-12% fat representing a winter sampling on the low end and summer sampling on the high end of the range. Bluefin tuna (a summer sampling) contained the most fat with a high of 23% fat. Omega-3 fatty acids were present in excess of omega-6 fatty acids. The fattier fISh supplied the most omega-3 fatty acids per gram of tissue. The mean cholesterol content for all species was 57 ± 16 mg/l00 g raw tissue. Finfish from the Northwest Atlantic would appear to fit into the regime for a healthy heart, being low in fat and cholesterol and rich in omega-3 fatty acids.(PDF file contains 42 pages.)
Resumo:
The successful application of techniques to enhance detection of age marks in biological specimens is of vital importance in fisheries research. This manual documents age determination techniques used by staff at the Woods Hole Laboratory, National Marine Fisheries Service. General information on procedures for preparing anatomical structures is described, together with criteria used to interpret growth patterns and assign ages. Annotated photographs of age structures are provided to illustrate criteria. Detailed procedures are given for the following species: Atlantic herring (Clupea harengus), haddock (Melanogrammus aeglefinus), Atlantic cod (Gadus morhua), pollock (Pollachius virens), silver hake (Merluccius bilinearis), red hake (Urophycis chuss), black sea bass (Centropristis striata), weakfish (Cynoscion regalis), Atlantic mackerel (Scomber scombrus), butterfish (Peprilus triacanthus), redfish (Sebastes fasciatus), summer flounder (Paralichthys dentatus), winter flounder (Pseudopleuronectes americanus), witch flounder (Glyptocephalus cynoglossus), American plaice (Hippoglossoides platessoides), yellowtail flounder (Limanda ferruginea), surf clam (Spisula solidissima), and ocean quahog (Arctica islandica). (PDF file contains 142 pages.)
Resumo:
A stock assessment of the Atlantic menhaden, Brevoortia tyrannus, fishery was conducted with purse-seine landings data from 1940 to 1984 and port sampling data from 1955 to 1984. These data were analyzed to determine growth rates, maximum sustainable yield (MSY), spawner-recruit relationships, and yield per recruit. Virtual population analysis was used to estimate stock size, year class size, and fishing mortality rates. Surplus production models produced estimates of MSY from 450 to 490 kmt compared with yields of 416to 436 kmt based roughly on maximum recruitment from a weak spawner-recruit relationship. Recruitment to age-I ranged from 1.2 to 14.8 billion fish for year classes 1955-81. Recent mean recruitment to age-I for the 1975-81 year classes averaged 5.7 billion fish and compared favorably with the mean of 7.7 billion age-I fish recruited during the late 1950's. Mean recruitment from recent years suggests possible coastwide yields of 416 to 481 kmt. Continued dominance of late age-2 spawners among the spawning stock is of concern, since the stock is at greater risk through poor recruitment if recent favorable environmental conditions change. Yield-per-recruit estimates ranged from 46 g to 59 g since 1970. The high dependency of the modern fishery on prespawners has increased concerns about fluctuations in year-to-year availability and catches. To increase yield and enhance the stability of the resource, the number of age classes contributing significantly to the fishery should be increased, creating a butTer against future poor recruitment years and lessening the year-to-year fluctuations in landings. (PDF file contains 24 pages.)
Resumo:
This report summarizes (I) annual purse seine landings of Atlantic menhaden, Brevoortia tyrannus, for 1972-84, (2) estimated numbers of fish caught by fishing area. (3) estimates of nominal fishing effort and catch-per-unit-effort, (4) mean fish length and weight, and (5) major changes in the fishery. During the 1970s stock size and recruitment increased and the age composition broadened. reversing trends witnessed during the fishery's decline in the 1960s. Landings steadily improved and by 1980 the total coast wide landings exceeded 400,000 metric tons. Nevertheless, the character of the fishery changed considerably. Eleven reduction plants processed fish at seven ports in 1972, but in 1984 only eight plants operated at live ports. Beginning in the mid-1960s the center of fishing aclivity shifted from the Middle Atlantic area to the Chesapeake Bay area, which has continued to dominate the fishery in landings and effort through the 1970s and 1980s. During this period the average size and age of fish in the catches declined. (PDF file contains 30 pages.)
Resumo:
Species composition, biomass, density, and diversity of benthic invertebrates from six bard-bottom areas were evaluated. Seasonal collections using a dredge, trawl, and suction and grab samplers yielded 432, 525, and 845 taxa, respectively. Based on collections wltb the different gear types, species composition of invertebrates was found to change bathymetrically. Inner- and mlddle-shelf sites were more similar to each other in terms of invertebrate species composition than they were to outer-shelf sites, regardless of season. Sites on the inner and outer shelf were grouped according to latitude; however, results suggest that depth is apparently a more important determinant of invertebrate species composition than either season or latitude. Sponges generally dominated dredge and trawl collections in terms of biomass. Generally, cnidarians, bryozoans, and sponges dominated at sites In terms of number of taxa collected. The most abundant smaller macrofauna collected in suction and grab samples were polychaetes, amphipods, and mollusks. Densities of the numerically dominant species changed botb seasonally and bathymetrically, with very few of these species restricted to a specific bathymetrlc zone. The high diversity of invertebrates from hard-bottom sites is attributed to the large number of rare species. No consistent seasonal changes in diversity or number of species were noted for individual stations or depth zones. In addition, H and its components showed no definite patterns related to depth or latitude. However, more species were collected at middle-shelf sites than at inner- or outer-shelf sites, which may be related to more stable bottom temperature or greater habitat complexity in that area. (PDF file contains 110 pages.)