23 resultados para Artificial satellites in search and rescue operations.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atlantic Croaker (Micropogonias undulatus) production dynamics along the U.S. Atlantic coast are regulated by fishing and winter water temperature. Stakeholders for this resource have recommended investigating the effects of climate covariates in assessment models. This study used state-space biomass dynamic models without (model 1) and with (model 2) the minimum winter estuarine temperature (MWET) to examine MWET effects on Atlantic Croaker population dynamics during 1972–2008. In model 2, MWET was introduced into the intrinsic rate of population increase (r). For both models, a prior probability distribution (prior) was constructed for r or a scaling parameter (r0); imputs were the fishery removals, and fall biomass indices developed by using data from the Multispecies Bottom Trawl Survey of the Northeast Fisheries Science Center, National Marine Fisheries Service, and the Coastal Trawl Survey of the Southeast Area Monitoring and Assessment Program. Model sensitivity runs incorporated a uniform (0.01,1.5) prior for r or r0 and bycatch data from the shrimp-trawl fishery. All model variants produced similar results and therefore supported the conclusion of low risk of overfishing for the Atlantic Croaker stock in the 2000s. However, the data statistically supported only model 1 and its configuration that included the shrimp-trawl fishery bycatch. The process errors of these models showed slightly positive and significant correlations with MWET, indicating that warmer winters would enhance Atlantic Croaker biomass production. Inconclusive, somewhat conflicting results indicate that biomass dynamic models should not integrate MWET, pending, perhaps, accumulation of longer time series of the variables controlling the production dynamics of Atlantic Croaker, preferably including winter-induced estimates of Atlantic Croaker kills.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the diets and habitat shift of juvenile red snapper (Lutjanus campechanus) in the northeast Gulf of Mexico. Fish were collected from open sand-mud habitat (little to no relief), and artificial reef habitat (1-m3 concrete or PVC blocks), from June 1993 through December 1994. In 1994, fish settled over open habitat from June to September, as shown by trawl collections, then began shifting to reef habitat — a shift that was almost completed by December as observed by SCUBA visual surveys. Stomachs were examined from 1639 red snapper that ranged in size from 18.0 to 280.0 mm SL. Of these, 850 fish had empty stomachs, and 346 fish from open habitat and 443 fish from reef habitat contained prey. Prey were identified to the lowest possible taxon and quantified by volumetric measurement. Specific volume of particular prey taxa were calculated by dividing prey volume by individual fish weight. Red snapper shifted diets with increasing size. Small red snapper (<60 mm SL) fed mostly on chaetognaths, copepods, shrimp, and squid. Large red snapper (60–280 mm SL) shifted feeding to fish prey, greater amounts of squid and crabs, and continued feeding on shrimp. We compared red snapper diets for overlapping size classes (70–160 mm SL) of fish that were collected from both habitats (Bray-Curtis dissimilarity index and multidimensional scaling analysis). Red snapper diets separated by habitat type rather than fish size for the size ranges that overlapped habitats. These diet shifts were attributed to feeding more on reef prey than on open-water prey. Thus, the shift in habitat shown by juvenile red snapper was reflected in their diet and suggested differential habitat values based not just on predation refuge but food resources as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals in general terms with the historical expeditions to the Antarctica by various explorers leading to the exploration and identification of various living resources of the Antarctica and also a cautionary note not to pollute or disturb the existing ecosystem either for economic or political reasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial Insemination (AI) is a tool for genetic manipulation in the shrimp stocks. It is seen as one of the means for propagating shrimp culture to new areas by controlled reproduction. Attempts at artificial insemination in the dominant closed-thelycum penaeid shrimps species of the area viz. Metapenaeus affinis and Metapenaeus brevicornis were induced in wild adult stocks collected off Mumbai coast. Female specimens were subjected to unilateral eyestalk ablation by pinching so as to induce moulting and maturation. AI was performed two days after moulting on these females when the cuticle was still soft and flexible. Moulting also ensured rejection of initial spermatophores, if present. Response of males to electrical stimulation for spermatophore expulsion was spontaneous. Use of tissue glue for spermatophore retention was found to be unnecessary. Latency period ranged between10-16 days, while spawning occurred within 10-12 days of spermatophore transfer. Three partial spawning were recorded viz., two in Metapenaeus affinis and one in Metapenaeus brevicornis with an average spawning and hatching rates of 30% and 72.3% respectively. Average survival from first nauplius (N1) to one-day old post-larva (PLI) was a meager 3.43%. Use of AI in genetic manipulation of shrimp stocks for aquacultural purposes is indicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results are presented of attempts to artificially fertilize Mugil cephalus eggs in the Philippines. Embryonic development is outlined and rearing of the larvae described. Mass mortality occurred during week 3 of rearing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A brief account is given of mud crab (Scylla spp) farming activities in the Philippines. The expanding market for mud crab is the cause of intensified collection of wild juveniles. To counter the threat to wild population and ensure the sustainability of mud crab farming, there is a need to produce juveniles in hatcheries. Hatchery and nursery operations, and investment costs/returns are outlined.