206 resultados para Aquatic organisms
Resumo:
This is the Proposed Environmental Quality Standards (EQS) for Phenol in Water prepared for the National Rivers Authority, and published by the Environment Agency in 1995. The report reviews the properties and uses of phenol, its fate, behaviour and reported concentrations in the environment and critically assesses the available data on its toxicity and bioaccumulation. The information is used to derive EQSs for the protection of fresh and saltwater life and for the abstraction of water to potable supply. Phenol is widely used as a chemical intermediate and the main sources for phenol in the environment are of anthropogenic origin. Phenol may also be formed during natural decomposition of organic material. The persistence of phenol in the aquatic environment is low with biodegradation being the main degradation process (half-lives of hours to days). Phenol is moderately toxic to aquatic organisms and its potential to bioaccumulate in aquatic organisms is low.
Resumo:
This report is the second in a series from a project to assess land-based sources of pollution (LBSP) and effects in the St. Thomas East End Reserves (STEER) in St. Thomas, USVI, and is the result of a collaborative effort between NOAA’s National Centers for Coastal Ocean Science, the USVI Department of Planning and Natural Resources, the University of the Virgin Islands, and The Nature Conservancy. Passive water samplers (POCIS) were deployed in the STEER in February 2012. Developed by the US Geological Survey (USGS) as a tool to detect the presence of water soluble contaminants in the environment, POCIS samplers were deployed in the STEER at five locations. In addition to the February 2012 deployment, the results from an earlier POCIS deployment in May 2010 in Turpentine Gut, a perennial freshwater stream which drains to the STEER, are also reported. A total of 26 stormwater contaminants were detected at least once during the February 2012 deployment in the STEER. Detections were high enough to estimate ambient water concentrations for nine contaminants using USGS sampling rate values. From the May 2010 deployment in Turpentine Gut, 31 stormwater contaminants were detected, and ambient water concentrations could be estimated for 17 compounds. Ambient water concentrations were estimated for a number of contaminants including the detergent/surfactant metabolite 4-tert-octylphenol, phthalate ester plasticizers DEHP and DEP, bromoform, personal care products including menthol, indole, n,n-diethyltoluamide (DEET), along with the animal/plant sterol cholesterol, and the plant sterol beta-sitosterol. Only DEHP appeared to have exceeded a water quality guideline for the protection of aquatic organisms.
Resumo:
The occurrence of hypoxia, or low dissolved oxygen, is increasing in coastal waters worldwide and represents a significant threat to the health and economy of our Nation’s coasts and Great Lakes. This trend is exemplified most dramatically off the coast of Louisiana and Texas, where the second largest eutrophication-related hypoxic zone in the world is associated with the nutrient pollutant load discharged by the Mississippi and Atchafalaya Rivers. Aquatic organisms require adequate dissolved oxygen to survive. The term “dead zone” is often used in reference to the absence of life (other than bacteria) from habitats that are devoid of oxygen. The inability to escape low oxygen areas makes immobile species, such as oysters and mussels, particularly vulnerable to hypoxia. These organisms can become stressed and may die due to hypoxia, resulting in significant impacts on marine food webs and the economy. Mobile organisms can flee the affected area when dissolved oxygen becomes too low. Nevertheless, fish kills can result from hypoxia, especially when the concentration of dissolved oxygen drops rapidly. New research is clarifying when hypoxia will cause fish kills as opposed to triggering avoidance behavior by fish. Further, new studies are better illustrating how habitat loss associated with hypoxia avoidance can impose ecological and economic costs, such as reduced growth in commercially harvested species and loss of biodiversity, habitat, and biomass. Transient or “diel-cycling” hypoxia, where conditions cycle from supersaturation of oxygen late in the afternoon to hypoxia or anoxia near dawn, most often occurs in shallow, eutrophic systems (e.g., nursery ground habitats) and may have pervasive impacts on living resources because of both its location and frequency of occurrence.
Resumo:
This study assessed the physico-chemical quality of River Ogun, Abeokuta, Ogun state, Southwestern Nigeria. Four locations were chosen spatially along the water course to reflect a consideration of all possible human activities that are capable of changing the quality of river water. The water samples were collected monthly for seven consecutive months (December 2011 – June 2012) at the four sampling stations. pH, air temperature (℃), water temperature (℃), conductivity (µs/cm) and total dissolved solids (mg/L) were conducted in-situ with the use of HANNA Combo pH and EC multi meter Hi 98129 and Mercury-in-glass thermometer while dissolved oxygen (mg/L), nitrate (mg/L), phosphate (mg/L), alkalinity (mg/L) and hardness (mg/L) were determined ex-situ using standard methods. Results showed that dissolved oxygen, hydrogen ion concentration, total hardness and nitrate were above the maximum permissible limit of National Administration for Food, Drugs and Control (NAFDAC), Standard Organization of Nigeria (SON), Federal Environmental Protection Agency (FEPA), United States Environmental Protection Agency (USEPA), European Union (EU) and World Health Organization (WHO) for drinking water during certain months of the study period. Results also showed that water temperature and conductivity were within the permissible limits of all the standards excluding FEPA. However, total dissolved solids and alkalinity were within the permissible limits of all the standards. Adejuwon and Adelakun, (2012) also reported similar findings on Rivers Lala, Yobo and Agodo in Ewekoro local government area of Ogun state, Nigeria. Since most of the parameters measured were above the maximum permissible limits of the national and international standards, it can be concluded that the water is unfit for domestic uses, drinking and aquacultural purposes and therefore needs to be treated if it is to be used at all. The low dissolved oxygen values for the first four months was too low i.e. < 5 mg/L. This is most likely as a result of the amount of effluents discharged into the river. To prevent mass extinction of aquatic organisms due to anoxic conditions, proper regulations should be implemented to reduce the organic load the river receives.
Resumo:
A year round investigation in the estuaries of Barguna district revealed that for each Penaeus monodon postlarvae (PL), about 37 larvae of other shrimp species, 12 finfishes and 10 macrozooplankters are destroyed during the process of shrimp seed collection. Although abundance of P. monodon PL was not recorded throughout the year, a significant number of other shrimp spp., fin fishes including macrozooplankters are being damaged by the shrimp seed collectors. This indiscriminate destruction of aquatic organisms during P. monodon PL collection is serious threat to aquatic biodiversity.
Resumo:
The Mundel Lake is an extremely shallow lagoon on the west coast of Sri Lanka. It is connected to the Puttalam Lagoon through 15 km long Dutch Canal. Salinity measurements and daily sea level data were obtained fortnightly from January 1993 to March 1994 and they were used to quantify the salt and water budget along with precipitation, evaporation and freshwater runoff. Extreme fluctuations of salinity and sea level are striking features of the system. Salinity of the Mundel Lake and Dutch Canal varied from 5-46.5 and 6 61 ppt respectively while the sea level ranged from -0.25 to +1.2 m. Tidal variations were not seen in the lagoon due to its long narrow canal system. Salt budget showed that the deposition of salt on the lagoon bottom during periods of decreasing water level. During increasing water level, salt is dissolved again. Flow of water through the Dutch Canal between the Puttalam Lagoon and Mundel Lake is driven by the changes in sea level. These changes are mainly due to seasonal changes of net freshwater supply and, to a lesser degree, to seasonal changes in sea surface height. As the flow rates are small due to the long and narrow canal, the residence time ranges between two months and several months in the Mundel Lake, except during season of high freshwater supply. As the water exchange is weak, the Mundel Lake becomes hyper saline with strong fluctuations in salinity. This implies a stress to all lagoon dwelling aquatic organisms and also to aquaculture practices in the area.
Resumo:
Biomicrocapsules mean microscopic living organisms which carry important nutrients, very essential for the growth and development of aquatic organisms as well as other animals. Among these biomicrocapsules, Chlorella ellipsoidea, an important green microalga (Chlorophyceae) which contains 40-45% crude protein, 12-16% crude lipid, 14-15% minerals, colour pigments, vitamins and carotene. The microalga, C. ellipsoidea was cultured in four different dilutions of supernatant of digested sugar mill effluent (DSME) i.e. 25, 50, 75 and 100% DSME and Bold basal medium (BBM) as control in laboratory condition. Maximum cell growth and chlorophyll a content of C. ellipsoidea were obtained on l0th day of culture in supernatant of 50% diluted DSME followed by those of this biomicrocapsule grown in BBM, and 75, 25 and 100% DSME at stationary phase. Cell number had highly (p<0.01) direct correlation with chlorophyll a (r = 0.889) of C. ellipsoidea, and optical density (r = 0.926) of media. Chlorophyll a was also highly (p<0.01) and directly correlated with optical density (r= 0.877) of media. The specific growth rates (µ/day) of cell and chlorophyll a of C. ellipsoidea grown in supernatant of 50% DSME were significantly (p<0.01) varied from those of C. ellipsoidea cultured in BBM followed by other DSME. Total biomass of C. ellipsoidea cultured in supernatant of 50% DSME was found significantly (p<0.01) higher than that of this microalga cultured in BBM, and supernatant of 25, 75 and 100% DSME. Similar trend was also observed in the case of optical density. The physico-chemical properties of media were varied with the growth of cell of this microalga. It was recorded that cell number, chlorophyll a of biomicrocapsule, and optical density of media were highly (p<0.01) and directly correlated with pH, hardness and alkalinity, and inversely correlated with nitrate-N. Crude protein and crude lipid of C. ellipsoidea grown in supernatant of 50% DSME were significantly (p<0.01) higher than those of C. ellipsoidea cultured in other DSME and BBM. Due to best growth performance exhibited by this microalga grown in supernatant of 50% DSME, it may be used to grow in supernatant of 50% DSME to get more essential nutrients than that cultured in supernatant of other DSME media.
Resumo:
The study was conducted to get an idea about the water quality of the Ashulia beel, and its temporal change over wet and dry seasons due to change of the physicochemical parameters. The water body has become a dumping ground of all kinds of solid, liquid and chemical wastes of bank side population and industries. Encroachment and illegal dredging has become a serious threat for the sound environment of the beel. The water parameters of pH 7.1-7.8 and alkalinity 30-63 mg/l in wet, and pH 7.1-8.4 and alkalinity 90-115 mg/l in dry season, respectively, which were within the standard range of DoE investigation. During wet season, EC 130-310 mg/l, TDS 80-132 mg/l, DO 1.1-2.1 mg/l and BOD -4.4-1.6 mg/l were measured. In dry season, EC 341-442 mg/l, TDS 207-276 mg/l, DO 0.5-2.0 mg/l and BOD 1.0-3.0 mg/l were measured. The comparative analysis showed that most of the water quality parameters of the Ashulia beel were suitable for aquatic organisms including fishes while the DO contents were much lower than the desirable level which may not be suitable for fishes.
Resumo:
This research investigates the quality of sonbolrood river by using Hylsenhof HFBI indicators and identified Macroinvertebrates invertebrates community in the family level. This study took place during 1388-1389 with four sampling season in four stations respectively in the forests of Kalyj kheyl village in Savadkuh (first station), industrial area of Islamabad (second Station), earth dam of Sonbolrood (third station) and the Place crosses Sonbolrood with Babolrood river (fourth Station). Macroinvertebrates invertebrates collected by quantitative sampler of Sorbr and they were isolated in laboratory by loop and they were identified in the family level. Generally, Macroinvertebrates of Sonbolrood river were formed three branches: Arthropods and flat worms and mollusks, including 3 tiers, 6 orders and 14 families that showed the maximum diversity and density in autumn and the least diversity and density in summer at all stations, also the third and fourth stations respectively were highest and lowest diversity and density. The water quality of Sonbolrood river based on the water quality Guide(Hylsenhof) is evaluated with excellent condition for all stations except third station. Sonbolrood river with having high slope, rocky and sandy bed, with self-refining act, completely is a proper ecosystem for aquatic organisms, but it is done due to increased organic matter and sewage factory located in industrial zone in the third station and then the increased water pollution caused by nurturing the water warm fish in the earth dam of Sonbolrood. (because of this, the water quality at third station based on the water quality Guide(Hylsenhof) are evaluated in a fairly good condition) and adding domestic sewages of adjacent villages like Seyedkola village and Shirdarkola caused increased pollution and increased trophy of Macroinvertebrates that are resistant to pollution and affect upon Macroinvertebrates community.
Resumo:
Chemical ecology is the science of study and analysis of natural chemical products in result of biochemical processes in organisms and their reactions to variations of ecological and environmental parameters. In marine chemical ecology the existence of natural products in aquatic organisms and their ecological roles in marine animals and their reactions to environmental parameters variations will be studied. Among them, fatty acids are the most various and abundant ones in natural products which had been extracted from many marine organisms such as mollusks and algae. In this study selected animals were the dominant species of mollusks in intertidal zone of chabahar bay including gastropods, bivalves and polyplacophora classes. Nerita textilis and Turbo coronatus species are among gastropoda, Saccostrea cucullata is from bivalve, and Chiton lamyi is from polyplacophora. After seasonal sampling, separation and identification of natural products of these species, fatty acids had been isolated and identified by GC mass chromatography and their seasonal variations had been identified. In addition environmental factors of the location including pH, salinity temperature, dissolved oxygen, chlorophyll a and nutrients were measured monthly. Then the effect of seasonal variations of environmental factors on fatty acids had been studied by applying statistical analysis. GC/MS resulted thirteen fatty acids, which the most importants were myristic, stearic, oleic, palmitoleic, arachidonic and eicosapentaenoic acids. In majority of species palmitic acid was most abundant than the others and saturatedes had the most percentage levels than unsaturated ones. Although seasonal variations of identified fatty acids was not similar in species, but the majority of unsaturated ones had their maximum during winter, while saturated acids reached their maximum in summer. Statistical Analysis showed the strong correlations between Environmental factors and some fatty acids and temperature, nitrate, silicate and pH had strong correlations in all species. The species was studied from the point of lipid content and the results showed a good quality of lipid content in the selected species in the intertidal zone of Chabahar bay.
Resumo:
The paper presents some recommendations on the effects of aquaculture on all persons affected by and involved in aquaculture, and to other users of waters in [which] aquatic organisms are farmed or which are affected by aquaculture: the farm workers, handlers and processors, sellers and consumers of aquaculture products.
Resumo:
The limnological investigations in Uganda freshwaters which were started in the 1920s looked into: the origins, the changing geological and climatic factors which gave rise to the characteristic inland waters; the primary production; the constituent small aquatic organisms and their ecology; and their bordering swamps. Most of them were formed immediately after the formation of the great Western rift valley. Almost all the inland waters in Uganda are typical tropical freshwaters which, because of their relative shallowness, experience rather frequent wind stirrings and therefore nutrient circulation which would make them relatively productive. Many physical, biological and chemical factors come into play to finally determine this. The present investigations continue to bridge the gaps which were left and also to collect the baseline data needed to later manage, monitor and control any possible pollution risks.
Resumo:
One of the objectives of the Terrestrial Initiative in Global Environmental Research is to assess the sensitivity of British plant and animal species to climate change. The first phase of the program involved the identification of criteria for selecting species suitable for the study of effects of projected climate change in the British Isles. Apart from shallow ponds, annual temperature ranges of 0 to 25 C in temperate freshwater habitats are narrower than those in most temperate terrestrial habitats. Although freshwater organisms have to exist within a narrower range than their terrestrial equivalents, few species can survive throughout their life cycle over the whole temperature range. Field studies on the effects of natural and artificial thermal discharges into streams and rivers have shown that increases in water temperature affect aquatic insects at both the species and community level. Although field data provide valuable information, a more productive approach is to determine experimentally the requirements of different species. Although there are just over 1850 species of aquatic insects in the British Isles, detailed quantitative information on the relationship between temperature and development of eggs, larvae and pupa is available for relatively few species. One exception is the egg stage of stoneflies (Plecoptera). The range for egg hatching in stoneflies clearly show that some species could be threatened while others could benefit from a defined increase in water temperature as a result of climate change. A critical review of the available data on this group would produce a set of equations that could be used to predict the ecological effects of climate change on this group of indicator species.
Resumo:
The chief objectives of this brief review are to collate and synthesise quantitative information on the temperature requirements of aquatic insects, and to identify species, and groups of species, that could be useful indicators of climate change and predictors of the ecological effects of change. It arose from the first phase of the Terrestrial Initiative in Global Environmental Research (TIGER), a five-year, NERC Community Programme on the role of the terrestrial biosphere in the science of global change. This phase involved the identification of criteria for selecting species suitable for the study of effects of projected climate change in the British Isles. Field and laboratory studies are reviewed, and criteria for selection of species for future research are suggested. The literature survey shows that no species of aquatic insect can be found to meet all three criteria, but information on the British stoneflies and their eggs already satisfies two of them.
Resumo:
Biodiversity values provide objective data and advice from which policy makes could assess the conservation options and determine optimal policies that would balance the needs of conservation with the socia-economic needs of the people in the area.