236 resultados para Alaska-Bering-Chukchi_Sea
Resumo:
We tested the hypothesis that larger juvenile sockeye salmon (Oncorhynchus nerka) in Bristol Bay, Alaska, have higher marine-stage survival rates than smaller juvenile salmon. We used scales from returning adults (33 years of data) and trawl samples of juveniles (n= 3572) collected along the eastern Bering Sea shelf during August through September 2000−02. The size of juvenile sockeye salmon mirrored indices of their marine-stage survival rate (e.g., smaller fish had lower indices of marine-stage survival rate). However, there was no relationship between the size of sockeye salmon after their first year at sea, as estimated from archived scales, and brood-year survival size was relatively uniform over the time series, possibly indicating size-selective mortality on smaller individuals during their marine residence. Variation in size, relative abundance, and marine-stage survival rate of juvenile sockeye salmon is likely related to ocean conditions affecting their early marine migratory pathways along the eastern Bering Sea shelf.
Resumo:
Rex sole (Glyptocephalus zachirus) have a wide distribution throughout the North Pacific, ranging from central Baja California to the western Bering Sea. Although rex sole are an important species in the commercial trawl fisheries off the U.S. West Coast, knowledge of their reproductive biology is limited to one study off the Oregon coast where ovaries were analyzed with gross anatomical methods. This study was initiated to determine reproductive and growth parameters specific to rex sole in the Gulf of Alaska (GOA) stock. Female rex sole (n=594) ranging in total length from 166 to 552 mm were collected opportunistically around Kodiak Island, Alaska, from February 2000 to October 2001. All ovaries were analyzed by using standard histological criteria to determine the maturity stage. Year-round sampling of rex sole ovaries confirmed that rex sole are batch spawners and have a protracted spawning season in the GOA that lasts at least eight months, from October to May; the duration of the spawning season and the months of spawning activity are different from those previously estimated. Female rex sole in the GOA had an estimated length at 50% maturity (ML50) of 352 mm, which is greater than the previously estimated ML50 at southern latitudes. The maximum age of collected female rex sole was 29 years, and the estimated age at 50% maturity (MA50) in the GOA was 5.1 years. The von Bertalanffy growth model for rex sole in the GOA was significantly different from the previously estimated model for rex sole off the Oregon coast. This study indicated that there are higher growth rates for rex sole in the GOA than off the Oregon coast and that there are differences in length at maturity and similarity in age at maturity between the two regions.
Resumo:
Thirteen bottom trawl surveys conducted in Alaska waters for red king crab, Paralithodes camtschaticus, during 1940–61 are largely forgotten today even though they helped define our current knowledge of this resource. Government publications on six exploratory surveys (1940–49, 1957) included sample locations and some catch composition data, but these documents are rarely referenced. Only brief summaries of the other seven annual (1955–61) grid-patterned trawl surveys from the eastern Bering Sea were published. Although there have been interruptions in sampling and some changes in the trawl survey methods, a version of this grid-patterned survey continues through the present day, making it one of the oldest bottom-trawl surveys in U.S. waters. Unfortunately, many of the specific findings made during these early efforts have been lost to the research community. Here, we report on the methods, results, and significance of these early surveys, which were collated from published reports and the unpublished original data sheets so that researchers might begin incorporating this information into stock assessments, ecosystem trend analyses, and perhaps even revise the baseline population distribution and abundance estimates.
Resumo:
The worldwide literature on management of spotted seals, Phoca largha, was reviewed and updated, and aerial surveys weref lown in 1992 and 1993 to determine the species' distribution and abundance in U.S. waters. In April, spotted seals were found only in the Bering Sea ice front. In June, they were seen along deteriorating ice floes and fast ice in Norton Sound. Surveys along most of Alaska's western coast in August and September found over 2,500 spotted seals in Kuskokwim Bay and concentrations of 100-400 seals around Nunivak Island, Scammon Bay, Golovnin Bay/Norton Sound, Cape Espenberg/Kotzebue Sound, and Kasegaluk Lagoon. All of these sites have been used by spotted seals in the past. The sum of the highest counts, irrespective of year, was 3,570 seals (CV =0.06). This is not an abundance estimate for all spotted seals in the Bering Sea, because it does not account for animals in the water, and we did not survey the Asian coast and some islands. Also, spotted seals and harbor seals, Phoca vitulina, are too similar in appearance to be identified accurately from the air, so our results probably include a mix of these species where their ranges overlap.
Resumo:
Southeast Bering Sea Carrying Capacity (SEBSCC, 1996–2002) was a NOAA Coastal Ocean Program project that investigated the marine ecosystem of the southeastern Bering Sea. SEBSCC was co-managed by the University of Alaska Fairbanks, NOAA Alaska Fisheries Science Center, and NOAA Pacific Marine Environmental Laboratory. Project goals were to understand the changing physical environment and its relationship to the biota of the region, to relate that understanding to natural variations in year-class strength of walleye pollock (Theragra chalcogramma), and to improve the flow of ecosystem information to fishery managers. In addition to SEBSCC, the Inner Front study (1997–2000), supported by the National Science Foundation (Prolonged Production and Trophic Transfer to Predators: Processes at the Inner Front of the S.E. Bering Sea), was active in the southeastern Bering Sea from 1997 to 1999. The SEBSCC and Inner Front studies were complementary. SEBSCC focused on the middle and outer shelf. Inner Front worked the middle and inner shelf. Collaboration between investigators in the two programs was strong, and the joint results yielded a substantially increased understanding of the regional ecosystem. SEBSCC focused on four central scientific issues: (1) How does climate variability influence the marine ecosystem of the Bering Sea? (2) What determines the timing, amount, and fate of primary and secondary production? (3) How do oceanographic conditions on the shelf influence distributions of fish and other species? (4) What limits the growth of fish populations on the eastern Bering Sea shelf? Underlying these broad questions was a narrower focus on walleye pollock, particularly a desire to understand ecological factors that affect year-class strength and the ability to predict the potential of a year class at the earliest possible time. The Inner Front program focused on the role of the structural front between the well-mixed waters of the coastal domain and the two-layer system of the middle domain. Of special interest was the potential for prolonged post-spring-bloom production at the front and its role in supporting upper trophic level organisms such as juvenile pollock and seabirds. Of concern to both programs was the role of interannual and longer-term variability in marine climates and their effects on the function of sub-arctic marine ecosystems and their ability to support upper trophic level organisms.
Resumo:
The impact of recent changes in climate on the arctic environment and its ecosystems appear to have a dramatic affect on natural populations (National Research Council Committee on the Bering Sea Ecosystem 1996) and pose a serious threat to the continuity of indigenous arctic cultures that are dependent on natural resources for subsistence (Peterson D. L., Johnson 1995). In the northeast Pacific, winter storms have intensified and shifted southward causing fundamental changes in sea surface temperature patterns (Beamish 1993, Francis et al. 1998). Since the mid 1970’s surface waters of the central basin of the Gulf of Alaska (GOA) have warmed and freshened with a consequent increase in stratification and reduced winter entrainment of nutrients (Stabeno et al. 2004). Such physical changes in the structure of the ocean can rapidly affect lower trophic levels and indirectly affect fish and marine mammal populations through impacts on their prey (Benson and Trites 2002). Alaskan natives expect continued and perhaps accelerating changes in resources due to global warming (DFO 2006).and want to develop strategies to cope with their changing environment.
Resumo:
Lengths of walleye pollock (Theragra chalcogramma) consumed by Steller sea lions (Eumetopias jubatus) were estimated by using allometric regressions applied to seven diagnostic cranial structures recovered from 531 scats collected in Southeast Alaska between 1994 and 1999. Only elements in good and fair condition were selected. Selected structural measurements were corrected for loss of size due to erosion by using experimentally derived condition-specific digestion correction factors. Correcting for digestion increased the estimated length of fish consumed by 23%, and the average mass of fish consumed by 88%. Mean corrected fork length (FL) of pollock consumed was 42.4 ±11.6 cm (range=10.0−78.1 cm, n=909). Adult pollock (FL>45.0 cm) occurred more frequently in scats collected from rookeries along the open ocean coastline of Southeast Alaska during June and July (74% adults, mean FL=48.4 cm) than they did in scats from haul-outs located in inside waters between October and May (51% adults, mean FL=38.4 cm). Overall, the contribution of juvenile pollock (≤20 cm) to the sea lion diet was insignificant; whereas adults contributed 44% to the diet by number and 74% by mass. On average, larger pollock were eaten in summer at rookeries throughout Southeast Alaska than at rookeries in the Gulf of Alaska and the Bering Sea. Overall it appears that Steller sea lions are capable of consuming a wide size range of pollock, and the bulk of fish fall between 20 and 60 cm. The use of cranial hard parts other than otoliths and the application of digestion correction factors are fundamental to correctly estimating the sizes of prey consumed by sea lions and determining the extent that these sizes overlap with the sizes of pollock caught by commercial fisheries.
Resumo:
The 2006 inter-sessional Science Board and Governing Council meeting: A note from the Chairman (pdf, 0.1 Mb) Future Integrative Science Program – Progress report (pdf, 0.2 Mb) Big-picture synthesis requires understanding the small and "in-between" stuff - A summary of the CCCC Synthesis Symposium (pdf, 0.4 Mb) PICES Calendar (pdf, 0.4 Mb) Integration of ecological indicators for the North Pacific with emphasis on the Bering Sea (pdf, 0.2 Mb) Time series of the Northeast Pacific: A symposium to mark the 50th anniversary of Line-P (pdf, 0.1 Mb) PICES hosts an ESSAS workshop in St. Petersberg, Russia (pdf, 0.2 Mb) Professor Mikhail N. Koshlyakov (pdf, 0.5 Mb) The state of the western North Pacific in the second half of 2005 (pdf, 0.8 Mb) Recent trends in waters of the subarctic NE Pacific (pdf, 0.2 Mb) Unusual invertebrates and fish observed in the Gulf of Alaska, 2004-2005 (pdf, 0.1 Mb) The Bering Sea: Current status and recent events (pdf, 0.2 Mb) The Year of the Euphausiid (pdf, 0.01 Mb) Michio J. Kishi awarded 2005 Uda Prize by the Japan Society of Fisheries Oceanography (pdf, 0.03 Mb)
Resumo:
Beyond El Nino Conference The status of the Bering Sea: June - December, 1999 The state of the western North Pacific in the second half of 1999 The state of the eastern North Pacific since autumn 1999 Project Argo Report of the ICES Zooplankton Ecology Working Group/PICES meeting Shark abundance increases in the Gulf of Alaska PICES Lower Trophic Level Modeling Workshop, Nemuro On the third meeting of the LMR-GOOS Panel Ocean Ecology of Juvenile Salmonids along the North American Coast
Resumo:
Improving PICES CO2 measurement quality The status of the Bering Sea: July - December 1998 The state of the eastern North Pacific since October 1998 The state of the western North Pacific in the second half of 1998 Paul Henry LeBlond Report on the ICES/SCOR Symposium on Ecosystem Effects of Fishing What is the carrying capacity of the North Pacific Ocean for salmonids? Southeast Bering Sea Carrying Capacity (SEBSCC) The Whole Earth System: The role of regional programs Sub-Arctic Gyre Experiment in the North Pacific Ocean (SAGE) The Alaska Predator Ecosystem Experiment (APEX): An integrated seabird and forage fish investigation sponsored by the Exxon Valdez Oil Spill Trustee Council ICES and GOOS: A progress report Report on GOOS Living Marine Resource Panel Meeting
Resumo:
Taking stock and looking to the future - note from former PICES Chairman The state of the western North Pacific in the first half of 1998 The status of the Bering Sea in the first eight month of 1998 The state of the eastern North Pacific since February 1998 Highlights of PICES VII, review of SB activities and future workplan The second PICES Workshop on the Okhotsk Sea and ajacent area PICES-GLOBEC Climate Change and Carrying Capacity Program: A report from PICES VII Data management for the CCCC Program Report on GOOS Living Marine Resource Panel Meeting Photos from PICES VII Vjatcheslav Petrovich Shuntov GLOBEC Canada: Who we are, what we’ve been doing and where we’re headed The Ocean Carrying Capacity Research Program (OCC) at the Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska JAMSTEC research activities in the northern North Pacific People and events
Resumo:
Report of Opening Session (pdf 68 KB) Report of Governing Council Meetings (pdf 61 KB) Reports of Science Board and Committees: Science Board (pdf 56 KB) Biological Oceanography Committee (pdf 64 KB) Working Group 14: Effective sampling of micronekton to estimate ecosystem carrying capacity Working Group 11: Consumption of Marine Resources by Marine Birds and Mammals Fishery Science Committee (pdf 55 KB) Working Group 12: Crabs and Shrimps Marine Environmental Quality Committee (pdf 104 KB) Working Group 8: Practical Assessment Methodology Physical Oceanography and Climate Committee (pdf 44KB) Working Group 13: CO2 in the North Pacific Technical Committee on Data Exchange (pdf 37 KB) Implementation Panel on the CCCC Program (pdf 54 KB) Finance and Administration: Report of the Finance and Administration Committee (pdf 31 KB) Assets on 31st of December, 1997 Income and Expenditures for 1997 Budget for 1999 Composition of the Organization (pdf 27 KB) List of Participants (pdf 48 KB) List of Acronyms (pdf 13 KB)
Resumo:
EXECUTIVE SUMMARY 1. DECADAL-SCALE CLIMATE EVENTS 1.1 Introduction 1.2 Basin-scale Patterns 1.3 Long Time Series in the North Pacific 1.4 Decadal Climate Variability in Ecological Regions of the North Pacific 1.5 Mechanisms 1.6 References 2. COHERENT REGIONAL RESPONSES 2.1 Introduction 2.2 Central North Pacific (CNP) 2.3 California Current System (CCS) 2.4 Gulf of Alaska (GOA) 2.5 Bering Sea and Aleutian Islands 2.6 Western North Pacific (WNP) 2.7 Coherence in Regional Responses to the 1998 Regime Shift 2.8 Climate Indicators for Detecting Regime Shifts 2.9 References 3. IMPLICATIONS FOR THE MANAGEMENT OF MARINE RESOURCES 3.1 Introduction 3.2 Response Time of Biota to Regime Shifts 3.3 Response Time of Management to Regime Shifts 3.4 Provision of Stock Assessment Advice 3.5 Decision Rules 3.6 References 4. SUGGESTED LITERATURE 4.1 Climate Regimes 4.2 Impacts on Lower Trophic Levels 4.3 Impacts on Fish and Higher Trophic Levels 4.4 Impacts on Ecosystems and Possible Mechanisms 4.5 Regimes and Fisheries Management APPENDIX 1: RECENT ECOSYSTEM CHANGES IN THE CENTRAL NORTH PACIFIC A1.1 Introduction A1.2 Physical Oceanography A1.3 Lower Trophic Levels A1.4 Invertebrates A1.5 Fishes A1.6 References APPENDIX 2: RECENT ECOSYSTEM CHANGES IN THE CALIFORNIA CURRENT SYSTEM A2.1 Introduction A2.2 Physical Oceanography A2.3 Lower Trophic Levels A2.4 Invertebrates A2.5 Fishes A2.6 References APPENDIX 3: RECENT ECOSYSTEM CHANGES IN THE GULF OF ALASKA A3.1 Introduction A3.2 Physical Oceanography A3.3 Lower Trophic Levels A3.4 Invertebrates A3.5 Fishes A3.6 Higher Trophic Levels A3.7 Coherence in Gulf of Alaska Fish A3.8 Combined Standardized Indices of Recruitment and Survival Rate A3.9 References APPENDIX 4: RECENT ECOSYSTEM CHANGES IN THE BERING SEA AND ALEUTIAN ISLANDS A4.1 Introduction A4.2 Bering Sea Environmental Variables and Physical Oceanography A4.3 Bering Sea Lower Trophic Levels A4.4 Bering Sea Invertebrates A4.5 Bering Sea Fishes A4.6 Bering Sea Higher Trophic Levels A4.7 Coherence in Bering Sea Fish Responses A4.8 Combined Standardized Indices of Bering Fish Recruitment and Survival Rate A4.9 Aleutian Islands A4.10 References APPENDIX 5: RECENT ECOSYSTEM CHANGES IN THE WESTERN NORTH PACIFIC A5.1 Introduction A5.2 Sea of Okhotsk A5.3 Tsushima Current Region and Kuroshio/Oyashio Current Region A5.4 Bohai Sea, Yellow Sea, and East China Sea A5.5 References (168 page document)
Resumo:
Table of Contents [pdf, 0.22 Mb] Executive Summary [pdf, 0.31 Mb] Report of the 2001 BASS/MODEL Workshop [pdf, 0.65 Mb] To review ecosystem models for the subarctic gyres Report of the 2001 MONITOR Workshop [pdf, 0.7 Mb] To review ecosystem models for the subarctic gyres Workshop presentations: Sonia D. Batten PICES Continuous Plankton Recorder pilot project Phillip R. Mundy GEM (Exxon Valdez Oil Spill Trustee Council`s "Gulf Ecosystem Monitoring" initiative) and U.S. GOOS plans in the North Pacific Ron McLaren and Brian O`Donnell A proposal for a North Pacific Action group of the international Data Buoy Cooperation Panel Gilberto Gaxiola-Castrol and Sila Najera-Martinez The Mexican oceanographic North Pacific program: IMECOCAL Sydney Levitus Building global ocean profile and plankton databases for scientific research Report of the 2001 REX Workshop [pdf, 1.73 Mb] On temporal variations in size-at-age for fish species in coastal areas around the Pacific Rim Workshop presentations: Brian J. Pyper, Randall M. Peterman, Michael F. Lapointe and Carl J. Walters [pdf, 0.33 Mb] Spatial patterns of covariation in size-at-age of British Columbia and Alaska sockeye salmon stocks and effects of abundance and ocean temperature R. Bruce MacFarlane, Steven Ralston, Chantell Royer and Elizabeth C. Norton [pdf, 0.4 Mb] Influences of the 1997-1998 El Niño and 1999 La Niña on juvenile Chinook salmon in the Gulf of the Farallones Olga S. Temnykh and Sergey L. Marchenko [pdf, 0.5 Mb] Variability of the pink salmon sizes in relation with abundance of Okhotsk Sea stocks Ludmila A. Chernoivanova, Alexander N. Vdoven and D.V. Antonenko [pdf, 0.3 Mb] The characteristic growth rate of herring in Peter the Great Bay (Japan/East Sea) Nikolay I. Naumenko [pdf, 0.5 Mb] Temporal variations in size-at-age of the western Bering Sea herring Evelyn D. Brown [pdf, 0.45 Mb] Effects of climate on Pacific herring, Clupea pallasii, in the northern Gulf of Alaska and Prince William Sound, Alaska Jake Schweigert, Fritz Funk, Ken Oda and Tom Moore [pdf, 0.6 Mb] Herring size-at-age variation in the North Pacific Ron W. Tanasichuk [pdf, 0.3 Mb] Implications of variation in euphausiid productivity for the growth, production and resilience of Pacific herring (Clupea pallasi) from the southwest coast of Vancouver Island Chikako Watanabe, Ahihiko Yatsu and Yoshiro Watanabe [pdf, 0.3 Mb] Changes in growth with fluctuation of chub mackerel abundance in the Pacific waters off central Japan from 1970 to 1997 Yoshiro Watanabe, Yoshiaki Hiyama, Chikako Watanabe and Shiro Takayana [pdf, 0.35 Mb] Inter-decadal fluctuations in length-at-age of Hokkaido-Sakhalin herring and Japanese sardine in the Sea of Japan Pavel A. Balykin and Alexander V. Buslov [pdf, 0.4 Mb] Long-term variability in length of walley pollock in the western Bering Sea and east Kamchtka Alexander A. Bonk [pdf, 0.4 Mb] Effect of population abundance increase on herring distribution in the western Bering Sea Sergey N. Tarasyuk [pdf, 0.4 Mb] Survival of yellowfin sole (Limanda aspera Pallas) in the northern part of the Tatar Strait (Sea of Japan) during the second half of the 20th century Report of the 2002 MODEL/REX Workshop [pdf, 1.2 Mb] To develop a marine ecosystem model of the North Pacific Ocean including pelagic fishes Summary and Overview [pdf, 0.4 Mb] Workshop presentations: Bernard A. Megrey, Kenny Rose, Francisco E. Werner, Robert A. Klumb and Douglas E. Hay [pdf, 0.47 Mb] A generalized fish bioenergetics/biomass model with an application to Pacific herring Robert A. Klumb [pdf, 0.34 Mb] Review of Clupeid biology with emphasis on energetics Douglas E. Hay [pdf, 0.47 Mb] Reflections of factors affecting size-at-age and strong year classes of herring in the North Pacific Shin-ichi Ito, Yutaka Kurita, Yoshioki Oozeki, Satoshi Suyama, Hiroya Sugisaki and Yongjin Tian [pdf, 0.34 Mb] Review for Pacific saury (Cololabis saira) study under the VENFISH project lexander V. Leonov and Gennady A. Kantakov [pdf, 0.34 Mb] Formalization of interactions between chemical and biological compartments in the mathematical model describing the transformation of nitrogen, phosphorus, silicon and carbon compounds Herring group report and model results [pdf, 0.34 Mb] Saury group report and model results [pdf, 0.46 Mb] Model experiments and hypotheses Recommendations [pdf, 0.4 Mb] Achievements and future steps Acknowledgements [pdf, 0.29 Mb] References [pdf, 0.32 Mb] Appendix 1. List of Participants [pdf, 0.32 Mb] Appendices 2-5. FORTRAN codes [pdf, 0.4 Mb] (Document pdf contains 182 pages)
Resumo:
Table of Contents [pdf, 0.11 Mb] Executive Summary [pdf, 0.07 Mb] MODEL Task Team Workshop Report Final Report of the International Workshop to Develop a Prototype Lower Trophic Level Ecosystem Model for Comparison of Different Marine Ecosystems in the North Pacific [pdf, 11.64 Mb] Report of the 1999 MONITOR Task Team Workshop [pdf, 0.32 Mb] Report of the 1999 REX Task Team Workshop Herring and Euphausiid population dynamics Douglas E. Hay and Bruce McCarter Spatial, temporal and life-stage variation in herring diets in British Columbia [pdf, 0.10 Mb] Augustus J. Paul and J. M. Paul Over winter changes in herring from Prince William Sound, Alaska [pdf, 0.08 Mb] N. G. Chupisheva Qualitative texture characteristic of herring (Clupea pallasi pallasi) pre-larvae developed from the natural and artificial spawning-grounds in Severnaya Bay (Peter the Great Bay) [pdf, 0.07 Mb] Gordon A. McFarlane, Richard J. Beamish and Jake SchweigertPacific herring: Common factors have opposite impacts in adjacent ecosystems [pdf, 0.15 Mb] Tokimasa Kobayashi, Keizou Yabuki, Masayoshi Sasaki and Jun-Ichi Kodama Long-term fluctuation of the catch of Pacific herring in Northern Japan [pdf, 0.39 Mb] Jacqueline M. O’Connell Holocene fish remains from Saanich Inlet, British Columbia, Canada [pdf, 0.40 Mb] Elsa R. Ivshina and Irina Y. Bragina On relationship between crustacean zooplankton (Euphausiidae and Copepods) and Sakhalin-Hokkaido herring (Tatar Strait, Sea of Japan) [pdf, 0.14 Mb] Stein Kaartvbeedt Fish predation on krill and krill antipredator behaviour [pdf, 0.08 Mb] Nikolai I. Naumenko Euphausiids and western Bering Sea herring feeding [pdf, 0.07 Mb] David M. Checkley, Jr. Interactions Between Fish and Euphausiids and Potential Relations to Climate and Recruitment [pdf, 0.08 Mb] Vladimir I. Radchenko and Elena P. Dulepova Shall we expect the Korf-Karaginsky herring migrations into the offshore western Bering Sea? [pdf, 0.75 Mb] Young Shil Kang Euphausiids in the Korean waters and its relationship with major fish resources [pdf, 0.29 Mb] William T. Peterson, Leah Feinberg and Julie Keister Ecological Zonation of euphausiids off central Oregon [pdf, 0.11 Mb] Scott M. Rumsey Environmentally forced variability in larval development and stage-structure: Implications for the recruitment of Euphausia pacifica (Hansen) in the Southern California Bight [pdf, 3.26 Mb] Scott M. Rumsey Inverse modelling of developmental parameters in Euphausia pacifica: The relative importance of spawning history and environmental forcing to larval stage-frequency distributions [pdf, 98.79 Mb] Michio J. Kishi, Hitoshi Motono & Kohji Asahi An ecosystem model with zooplankton vertical migration focused on Oyashio region [pdf, 33.32 Mb] PICES-GLOBEC Implementation Panel on Climate Change and Carrying Capacity Program Executive Committee and Task Team List [pdf, 0.05 Mb] (Document pdf contains 142 pages)