29 resultados para 57-04
Resumo:
Front cover. Contents.
Resumo:
Charles Darwin Foundation for the Galapagos Islands. Map
Resumo:
Front cover. Contents.
Resumo:
Back cover.
Resumo:
The offshore shelf and canyon habitats of the OCNMS are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary.
Resumo:
Influence of stocking density on the production of freshwater catfish Pangasius pangasius with formulated feed in ponds was studied. The fish fry were collected from the Meghna river near Chandpur which is a natural breeding ground of this fish. Three stocking densities chosen during this experiment were 5000, 8000 and 11000 fry/ha with an initial weight of 42.57 ±2.51 g. The formulated feed was prepared in the laboratory which contained 45% fish meal, 30% mustard oil cake, 15% wheat bran and 10% rice bran to supply 40.48% protein in feed. The growth of P. pangasius in terms of net weight gain was 409.49, 266.49 and 236.37 g at the 5000/ha, 8000/ha and 11000/ha stocking densities respectively, which was statistically significant (p<0.05). High food conversion ratio (FCR) was also observed during this research study which ranged between 7.06 to 7.72. A production of 2.6 tons/ha at the stocking density of 11000/ha; 2.13 tons/ha at the stocking density of 8000/ha and 2.04 tons/ha at the stocking density of 5000/ha was obtained, while the growth of individual fish at the end of experiment was in opposite order. The result of this experiment indicates that stocking density has significant influence on the culture potential of freshwater catfish P.pangasius.
Resumo:
An experiment was conducted to understand the culture feasibility of sliver barb
(Barbodes gonionotus) and GIFT (Genetically Improved Farmed Tilapia) with shrimp
(Penaeus monodon). There were three different treatment (T) combinations: (T1) shrimp
(10,000/ha) and silver barb (10,000/ha), (T2) shrimp (10,000/ha) and GIFT (10,000/ha),
and (T3) shrimp (10,000/ha). Shrimp, after 120 days of culture, attained an average weight
of 23.77g in T1, followed by T3 (23.70g). The highest average weight was recorded in T2
(24.93g). The specific growth rate (SGR) of shrimp was 6.9%, 6.94% and 6.9% for T1 T2
and T3, respectively. The SGR for the B. gonionotus and GIFT was 2.56% and 4.26%,
respectively. The final weight of silver barb was 69.75g and that of GIFT was 161.83g.
Survival of shrimp was higher (65.50%) in T2, followed by T3 (59.97%) and T1 (57.03%).
Survival rate of silver barb (58.10%) was lower compared to that of GIFT (78.43%).
Sporadic and scanty mortality of silver barb with a symptom of blind-red-protruded eye,
swollen belly and body lesion was observed. Production of shrimp was higher of 284.05
kg/ha in monoculture, followed 162.47 kg/ha in concurrent culture with silver barb and
136.77 kg/ha culture with GIFT. In spite of similar stocking density of B. gonionotus and
GIFT in T1 and T2, respectively, the production of GIFT was higher (1272.95 kg/ha)
than that of silver barb ( 402.72kg/ha). Survival, final weight and production rates of
shrimp among the treatments were found insignificant while total production of
shrimp/fish was found to vary significantly (P
Resumo:
To investigate the effect of protein restriction with subsequent re-alimentation on nutrient utilization, hematological and biochemical changes of Indian major carp, Rohu (Labeo rohita H.), 150 acclimatized Rohu fingerlings (average 20.74 ± 0.13 g) divided into five experimental groups (30 fingerlings in each groups with three replications with 10 fingerlings in each) for experimental trial of 90 days using completely randomized design. Control group (T sub(CPR)) was fed with feed having 30% crude protein at 3% of body weight for 90 days trial period. Other experimental groups T sub(1PR) was alternatively 3 days fed with feed having 20% CP and 30% CP at 3% of body weight, T sub(2PR) was alternatively 7 days fed with feed having 20% CP and 30% CP at 3% of body weight, T sub(3PR) was alternatively 15 days fed with feed having 20% CP and 30% CP at 3% of body weight and T sub(4PR) was alternatively 25 days fed with feed having 20% CP and 30% CP at 3% of body weight during 90 days trial period with daily ration in two equal halves at morning and afternoon. It was noticed that retention of different nutrients was almost similar among all treatment groups indicated improvement of digestibility of nutrients might not be the mechanisms for recovery growth in carps. Increased percent feed intake of body weight (hyperphagia) (4.14 ± 0.30 or 4.94 ± 0.46 and 3.33 ± 0.29), improved specific growth rate (1.86 ± 0.09 or 2.26 ± 0.05 and 1.43 ± 0.01), absolute growth rate (1.57 ± 0.08 or 1.84 ± 0.18 and 1.36 ± 0.12), protein efficiency ratio (1.19 ± 0.11 or1.16 ± 0.12 and 1.05 ± 0.09) were the important mechanism showing better performance index (21.60 ± 1.09 or 23.80 ± 0.21 and 19.45 ± 0.37) through which the experimental groups which were protein restricted and re-alimented at 3 or 7 days alternatively during 90 days trial period could able to compensate the growth retardation and to catch up the final body weight of control (128.68 ± 11.53 g/f) but other experimental groups failed to compensate during 90 days trial period. Result of the present study indicated that deprived fish i.e., fish received alternate 3 or 7 days protein restriction and re-alimentation showed recovery growth had still lower values of Hb (10.21 ± 0.02, and 9.88 ± 0.04 g/dl), hematocrit value (30.62 ± 0.05 and 26.64 ± 0.11%), total erythrocytic count (3.40 ± 0.01 and 3.29 ± 0.01 X10super(6) mm³), plasma glucose (126.93 ± 0.20 and 126.67 ± 0.05 mg/dl), total plasma lipid (1.04 ± 0.01 and 1.02 ± 0.01 g/dl) and liver glycogen (290.10 ± 0.80 and 288.99 ± 0.95 mg/kg) in comparison to control (10.56 ± 0.08 g/dl, 31.68 ± 0.24%, 3.52 ± 0.03 X10super(6) mm³, 128.23 ± 0.25 mg/dl, 1.07 ± 0.01g/dl and 292.00 ± 0.23 mg/kg) at the end of 90 days trial but total plasma protein in deprived group was compensated with advancement of trial period. All hematological and biochemical parameters studied were proportionately lowered in the experimental group got higher degree of deprivation. These findings suggested that with the increase of trial length complete compensation of hematological and biochemical profiles of rohu might be achieved. The results indicated that the implementation of alternative 7 days low and high protein diet feeding during aquaculture of carps could make economize the operation through minimizing the feed input cost.
Resumo:
The main aim of this research was to identify fatty acids composition of Caspian sea of White fish Rutilus frisi kutum tissue and their changes during one year cold storage (-18Ċ).The secondary aim was to determine the changes of moisture, ash, protein, fat, and to investigate the effects of storage time on peroxide, TBAi, FFA, and extractability of myofibrillar proteins of the fish tissue during one year cold storage (-18 Ċ). 10 samples of (Rutilus frisi kutum) were randomly collected from Anzali landings. The samples were frozen at -30 Ċ and kept in cold storage at -18Ċ for one year. According to time table, the samples were examined. The results showed that 27 fatty acids were identified. The unsaturated fatty acids (UFA) and saturated fatty acids (SFA) were 74/09 and 21/63 %, respectively, in fresh tissue. So that DHA (C22:6) oleic acid (C18:1c) had high amounts (15/07 ,20/57 ) among the UFA and palmitic acid (C16:0) was the most (13/09 %) among the SFA. The effects of freezing and cold storage on fish tissue showed that UFA and SFA contents have reached to 58/79 and 22/17 %, respectively, at the end of cold storage. It indicated that these compound change to each other during frozen storage. Also ω-3 and ω-6 series of fatty acids was 24/22 and 15/56% in fresh tissue, but their contents decreased to 8/68 and 5/11% at the end of period. Among the fatty acids C22:6, C18:1c and C16:0 had the most changes. The changes of fatty acids were significantly at 95% level expected for C18:0. Results showed that moisture, ash, protein, and fat contents were 75/9±0/03, 1/28±0/012, 21/8±0/2, and 4/1±0/01 % respectively, in fresh tissue. The moisture, ash, protein, and fat contents were 72/3±0/04, 1/83±0/05, 1/91±0/01 and 19/9±0/01 % respectively, at the end of storage period. Lipid damage was measured on the basis of free fatty acids (FFA), peroxide value (PV), and Thiobarbituric acid index (TBA-i). PV, TBARS and FFA concentration of frozen Caspian Sea white fish stored at -18 Ċ the temporal variation of these three variables were statistically significant (p<0.001). Results of White fish myofibrillar proteins showed aggregation of bound reduced for stored at 12 months. SDS-PAGE analysis revealed that, the intensity of the myosin heavy chain and actin bound was reduced with increasing storage time. SDS-PAGE patterns showed that myosin heavy chain was much more susceptible to hydrolysis than actin. Key words: Rutilus frisi kutum, frozen storage, ω-3, ω-6, protein myofibrillar
Resumo:
The annual report present activities carried out by the different organizations that make up the East African Agricultural & Fisheries Research Council which covers reports from the following Organisations: I. Report of the East African Agriculture and Forestry Research Organization 2. Report of the East African Fishery Research Organization 3. Report of the East African Marine Fisheries Research Organization 4. Report of the East African Trypanosomiasis Research Organization and 5. Report of the East African Veterinary Research Organization The activities reported are for the period 1956-57