22 resultados para 17TH CENTURY
Resumo:
Technological innovation has made it possible to grow marine finfish in the coastal and open ocean. Along with this opportunity comes environmental risk. As a federal agency charged with stewardship of the nation’s marine resources, the National Oceanic and Atmospheric Administration (NOAA) requires tools to evaluate the benefits and risks that aquaculture poses in the marine environment, to implement policies and regulations which safeguard our marine and coastal ecosystems, and to inform production designs and operational procedures compatible with marine stewardship. There is an opportunity to apply the best available science and globally proven best management practices to regulate and guide a sustainable United States (U.S.) marine finfish farming aquaculture industry. There are strong economic incentives to develop this industry, and doing so in an environmentally responsible way is possible if stakeholders, the public and regulatory agencies have a clear understanding of the relative risks to the environment and the feasible solutions to minimize, manage or eliminate those risks. This report spans many of the environmental challenges that marine finfish aquaculture faces. We believe that it will serve as a useful tool to those interested in and responsible for the industry and safeguarding the health, productivity and resilience of our marine ecosystems. This report aims to provide a comprehensive review of some predominant environmental risks that marine fish cage culture aquaculture, as it is currently conducted, poses in the marine environment and designs and practices now in use to address these environmental risks in the U.S. and elsewhere. Today’s finfish aquaculture industry has learned, adapted and improved to lessen or eliminate impacts to the marine habitats in which it operates. What progress has been made? What has been learned? How have practices changed and what are the results in terms of water quality, benthic, and other environmental effects? To answer these questions we conducted a critical review of the large body of scientific work published since 2000 on the environmental impacts of marine finfish aquaculture around the world. Our report includes results, findings and recommendations from over 420 papers, primarily from peer-reviewed professional journals. This report provides a broad overview of the twenty-first century marine finfish aquaculture industry, with a targeted focus on potential impacts to water quality, sediment chemistry, benthic communities, marine life and sensitive habitats. Other environmental issues including fish health, genetic issues, and feed formulation were beyond the scope of this report and are being addressed in other initiatives and reports. Also absent is detailed information about complex computer simulations that are used to model discharge, assimilation and accumulation of nutrient waste from farms. These tools are instrumental for siting and managing farms, and a comparative analysis of these models is underway by NOAA.
Resumo:
At decadal period (10-20 years), dynamic linkage was evident between atmospheric low pressure systems over the North Pacific Ocean and circulation in a Pacific Northwest fjord (Puget Sound). As the Aleutian low pressure center shifts, storms arriving from the North Pacific Ocean deposit varying amounts of precipitation in the mountains draining into the estuarine system; in turn, the fluctuating addition of fresh water changes the density distribution near the fjord basin entrance sill, thereby constraining the fjord's vertical velocity structure. This linkage was examined using time series of 21 environmental parameters from 1899 to 1987. Covariation in the time series was evident because of the strong decadal cycles compared with long-term averages, interannual variability, and seasonal cycles.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Time scales extracted from high-resolution proxy records and observations indicate that the spectrum of climate variability exhibits significant power in the range of decades to centuries superimposed on a red-noise continuum. The classical view of climate variability is based on the concept that observed fluctuations have their origin in periodic forcings on the same time scale. ... Instead, it is proposed that these fluctuations are linked to interactions within and between the different climate system components.
Resumo:
Time series analysis methods have traditionally helped in identifying the role of various forcing mechanisms in influencing climate change. A challenge to understanding decadal and century-scale climate change has been that the linkages between climate changes and potential forcing mechanisms such as solar variability are often uncertain. However, most studies have focused on the role of climate forcing and climate response within a strictly linear framework. Nonlinear time series analysis procedures provide the opportunity to analyze the role of climate forcing and climate responses between different time scales of climate change. An example is provided by the possible nonlinear response of paleo-ENSO-scale climate changes as identified from coral records to forcing by the solar cycle at longer time scales.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Havasu Creek is the second largest tributary of the Colorado River in Grant Canyon. Perennial streamflow in the creek seldom exceeds 2 cubic meters per second, but it supports an important riparian habitat as well as unique travertine pools and waterfalls that attract over 20,000 tourists annually. Havasu Canyon is also home to over 400 members of the Havasu Tribe. Despite a long history of habitation and recreation in Havasu Canyon, streamflow records for Havasu Creek are extremely limited, making flood prediction difficult.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Our objective is to combine terrestrial and oceanic records for reconstructing West Coast climate. Tree rings and marine laminated sediments provide high-resolution, accurately dated proxy data on the variability of climate and on the productivity of the ocean and have been used to reconstruct precipitation, temperature, sea level pressure, primary productivity, and other large-scale parameters. We present here the latest Santa Barbara basin varve chronology for the twentieth century as well as a newly developed tree-ring chronology for Torrey pine.
Resumo:
The purpose of this paper is to summarize the biggest northern California floods of the 20th century. Flooding in California can occur from different causes. At least three types of floods occur: 1. Winter general floods, which cover a large area. 2. Spring and early summer snowmelt floods unique to the higher-elevation central and southern Sierra Nevada, which occur about once in 10 years on the average. 3. Local floods from strong thunderstorms, with intense rain over a relatively small area. These originate in moist tropical or subtropical air and include the flash floods of the desert and other areas of southern California when remnants of eastern Pacific hurricanes get carried into the state.