414 resultados para Pacific Decadal Oscillation
Resumo:
The seasonally oscillating growth parameters and length-weight relationships for Scomber japonicus caught in the Gulf of Guayaquil, Ecuador, were determined based on length-frequency data from 1989 to 1996, using the FiSAT software package of Gayanilo et al. (1996). Estimates of growth parameters are in general agreement with previous studies on the same species. Results also imply that the growth of Scomber japonicus slows down during the cold season by approximately 50% with respect to the average growth. The mean value of the power b is significantly larger than 3, indicating that the model of allometric growth should be used for the length-weight relationship and calculation of the condition factor.
Resumo:
Survey- and fishery-derived biomass estimates have indicated that the harvest indices for Pacific cod (Gadus macrocephalus) within a portion of Steller sea lion (Eumetopias jubatus) critical habitat in February and March 2001 were five to 16 times greater than the annual rate for the entire Bering Sea-Aleutian Islands stock. A bottom trawl survey yielded a cod biomass estimate of 49,032 metric tons (t) for the entire area surveyed, of which less than half (23,329 t) was located within the area used primarily by the commercial fishery, which caught 11,631 t of Pacific cod. Leslie depletion analyses of fishery data yielded biomass estimates of approximately 14,500 t (95% confidence intervals of approximately 9,000–25,000 t), which are within the 95% confidence interval on the fished area survey estimate (12,846–33,812 t). These data indicate that Leslie analyses may be useful in estimating local fish biomass and harvest indices for certain marine fisheries that are well constrained spatially and relatively short in duration (weeks). In addition, fishery effects on prey availability within the time and space scales relevant to foraging sea lions may be much greater than the effects indicated by annual harvest rates estimated from stock assessments averaged across the range of the target spec
Resumo:
Data recovered from 11 popup satellite archival tags and 3 surgically implanted archival tags were used to analyze the movement patterns of juvenile northern bluefin tuna (Thunnus thynnus orientalis) in the eastern Pacific. The light sensors on archival and pop-up satellite transmitting archival tags (PSATs) provide data on the time of sunrise and sunset, allowing the calculation of an approximate geographic position of the animal. Light-based estimates of longitude are relatively robust but latitude estimates are prone to large degrees of error, particularly near the times of the equinoxes and when the tag is at low latitudes. Estimating latitude remains a problem for researchers using light-based geolocation algorithms and it has been suggested that sea surface temperature data from satellites may be a useful tool for refining latitude estimates. Tag data from bluefin tuna were subjected to a newly developed algorithm, called “PSAT Tracker,” which automatically matches sea surface temperature data from the tags with sea surface temperatures recorded by satellites. The results of this algorithm compared favorably to the estimates of latitude calculated with the lightbased algorithms and allowed for estimation of fish positions during times of the year when the lightbased algorithms failed. Three near one-year tracks produced by PSAT tracker showed that the fish range from the California−Oregon border to southern Baja California, Mexico, and that the majority of time is spent off the coast of central Baja Mexico. A seasonal movement pattern was evident; the fish spend winter and spring off central Baja California, and summer through fall is spent moving northward to Oregon and returning to Baja California.
Resumo:
Fecundity was estimated for shortspine thornyhead (Sebastolobus alascanus) and longspine thornyhead (S. altivelis) from the northeastern Pacific Ocean. Fecundity was not significantly different between shortspine thornyhead off Alaska and the West Coast of the United States and is described by 0.0544 × FL3.978, where FL =fish fork leng th (cm). Fecundity was estimated for longspine thornyhead off the West Coast of the United States and is described by 0.8890 × FL3.249. Contrary to expectations for batch spawners, fecundity estimates for each species were not lower for fish collected during the spawning season compared to those collected prior to the spawning season. Stereological and gravimetric fecundity estimation techniques for shortspine thornyhead provided similar results. The stereological method enabled the estimation of fecundity for samples collected earlier in ovarian development; however it could not be used for fecundity estimation in larger fish.
Resumo:
Inter and intra-annual variation in year-class strength was analyzed for San Francisco Bay Pacific herring (Clupea pallasi) by using otoliths of juveniles. Juvenile herring were collected from March through June in 1999 and 2000 and otoliths from subsamples of these collections were aged by daily otolith increment analysis. The composition of the year classes in 1999 and 2000 were determined by back-calculating the birth date distribution for surviving juvenile herring. In 2000, 729% more juveniles were captured than in 1999, even though an estimated 12% fewer eggs were spawned in 2000. Spawning-date distributions show that survival for the 2000 year class was exceptionally good for a short (approximately 1 month) period of spawning, resulting in a large abundance of juvenile recruits. Analysis of age at size shows that growth rate increased significantly as the spawning season progressed both in 1999 and 2000. However, only in 2000 were the bulk of surviving juveniles a product of the fast growth period. In the two years examined, year-class strength was not predicted by the estimated number of eggs spawned, but rather appeared to depend on survival of eggs or larvae (or both) through the juvenile stage. Fast growth through the larval stage may have little effect on year-class strength if mortality during the egg stage is high and few larvae are available.
Resumo:
Diet analysis of 52 loggerhead sea turtles (Caretta caretta) collected as bycatch from 1990 to 1992 in the high-seas driftnet fishery operating between lat. 29.5°N and 43°N and between long. 150°E and 154°W demonstrated that these turtles fed predominately at the surface; few deeper water prey items were present in their stomachs. The turtles ranged in size from 13.5 to 74.0 cm curved carapace length. Whole turtles (n =10) and excised stomachs (n= 42) were frozen and transported to a laboratory for analysis of major faunal components. Neustonic species accounted for four of the five most common prey taxa. The most common prey items were Janthina spp. (Gastropoda); Carinaria cithara Benson 1835 (Heteropoda); a chondrophore, Velella velella (Hydrodia); Lepas spp. (Cirripedia), Planes spp. (Decapoda: Grapsidae), and pyrosomas (Pyrosoma spp.).
Resumo:
Two examples of indirect validation are described for age-reading methods of Pacific cod (Gadus macrocephalus). Aging criteria that exclude faint translucent zones (checks) in counts of annuli and criteria that include faint zones were both tested. Otoliths from marked and recaptured fish were used to back-calculate the length of each fish at the time of its release by using measurements of the area of annuli. Estimated fish size at time of release and actual observed fish size were similar, supporting the assumption that translucent zones are laid down on an annual basis. A second method for validating reading criteria used otolith age and von Bertalanffy parameters, estimated from the tagging data, to predict how much each fish grew in length after tagging. We found that otolith aging criteria applied to otoliths from tagged and recovered Pacific cod predicted quite accurately the growth increments that we observed in these specimens. These results provide further evidence that the current aging criteria are not underestimating the age of the fish and support our current interpretation of checks (i.e., as subannual marks). We expect these indirect validations to advance age determination for Pacific cod, which in turn would enhance development of stock assessment methods based on age structure for this species in the eastern Bering Sea.
Resumo:
In the North Pacific Ocean, an ecosystem-based fishery management approach has been adopted. A significant objective of this approach is to reduce interactions between fishery-related activities and protected species. We review management measures developed by the North Pacific Fishery Management Council and the National Marine Fisheries Service to reduce effects of the groundfish fisheries off Alaska on marine mammals and seabirds, while continuing to provide economic opportunities for fishery participants. Direct measures have been taken to mitigate known fishery impacts, and precautionary measures have been taken for species with potential (but no documented) interactions with the groundfish fisheries. Area closures limit disturbance to marine mammals at rookeries and haulouts, protect sensitive benthic habitat, and reduce potential competition for prey resources. Temporal and spatial dispersion of catches reduce the localized impact of fishery removals. Seabird avoidance measures have been implemented through collaboration with fishery participants and have been highly successful in reducing seabird bycatch. Finally, a comprehensive observer monitoring program provides data on the location and extent of bycatch of marine mammals and seabirds. These measures provide managers with the flexibility to adapt to changes in the status of protected species and evolving conditions in the fisheries. This review should be useful to fishery managers as an example of an ecosystem-based approach to protected species management that is adaptive and accounts for multiple objectives.
Resumo:
The 19th century commercial ship-based fishery for gray whales, Eschrichtius robustus, in the eastern North Pacific began in 1846 and continued until the mid 1870’s in southern areas and the 1880’s in the north. Henderson identified three periods in the southern part of the fishery: Initial, 1846–1854; Bonanza, 1855–1865; and Declining, 1866–1874. The largest catches were made by “lagoon whaling” in or immediately outside the whale population’s main wintering areas in Mexico—Magdalena Bay, Scammon’s Lagoon, and San Ignacio Lagoon. Large catches were also made by “coastal” or “alongshore” whaling where the whalers attacked animals as they migrated along the coast. Gray whales were also hunted to a limited extent on their feeding grounds in the Bering and Chukchi Seas in summer. Using all available sources, we identified 657 visits by whaling vessels to the Mexican whaling grounds during the gray whale breeding and calving seasons between 1846 and 1874. We then estimated the total number of such visits in which the whalers engaged in gray whaling. We also read logbooks from a sample of known visits to estimate catch per visit and the rate at which struck animals were lost. This resulted in an overall estimate of 5,269 gray whales (SE = 223.4) landed by the ship-based fleet (including both American and foreign vessels) in the Mexican whaling grounds from 1846 to 1874. Our “best” estimate of the number of gray whales removed from the eastern North Pacific (i.e. catch plus hunting loss) lies somewhere between 6,124 and 8,021, depending on assumptions about survival of struck-but-lost whales. Our estimates can be compared to those by Henderson (1984), who estimated that 5,542–5,507 gray whales were secured and processed by ship-based whalers between 1846 and 1874; Scammon (1874), who believed the total kill over the same period (of eastern gray whales by all whalers in all areas) did not exceed 10,800; and Best (1987), who estimated the total landed catch of gray whales (eastern and western) by American ship-based whalers at 2,665 or 3,013 (method-dependent) from 1850 to 1879. Our new estimates are not high enough to resolve apparent inconsistencies between the catch history and estimates of historical abundance based on genetic variability. We suggest several lines of further research that may help resolve these inconsistencies.
Review of the California Trawl Fishery for Pacific Ocean Shrimp, Pandalus jordani, from 1992 to 2007
Resumo:
The commercial bottom trawl fishery for Pacific ocean shrimp, Pandalus jordani, or pink shrimp, operates mostly off the west coast of the contiguous United States. The California portion of the fishery has not been thoroughly documented or reviewed since the 1991 fishing season, despite its fluctuating more during the last 16 years (1992–2007) than at any other period in its 56-year history. We used fishery-dependent data, California Department of Fish and Game commercial landing receipts and logbook data, to analyze trends and review the California pink shrimp trawl fishery from 1992 to 2007. In particular, we focus on the most recent years of the fishery (2001–07) to highlight the gear developments and key management measures implemented in the fishery. The fishery is primarily driven by market conditions and is highly regulated by both state and Federal management agencies. Several key regulatory measures implemented during this decade have had significant effects on the fishery. For example, the requirement of a Bycatch Reduction Device on trawl nets targeting pink shrimp was approved in 2001 and has greatly reduced levels of finfish bycatch. Fishery production has declined, particularly in recent years, and may be attributed to decreased market prices, followed by reduced fishermen participation; both of which are related to changes in the processing sector and demand for the product.
Resumo:
Pacific hake, Merluccius productus, the most abundant groundfish in the California Current Large Marine Ecosystem (CCLME), is a species of both commercial significance, supporting a large international fishery, and ecological importance, connecting other species as both predator and prey. Coastal Pacific hake migrations are characterized by movements between northern summer feeding areas and southern winter spawning areas, with variations in annual abundance, distribution, and the extent of these movements associated with varying climate-ocean conditions. In general, warm (cool) years with enhanced (reduced) stratification and poleward (equatorward) transport are often related to good (poor) recruitment, increased (decreased) northward distribution, and reduced (enhanced) growth. However, the classic periodic pattern of annual migration and distribution may no longer be fully representative. Based on recent advances in the understanding of climate-ocean variability off the U.S. west coast, we hypothesize that the annual movements of Pacific hake are more responsive to climate-ocean variability than previously thought, and further, that changes observed in Pacific hake distributions may reflect long-term changes in climate-ocean conditions in the CCLME. Therefore, an updated model of these relations is key to effective monitoring and management of this stock, as well as to devising scenarios of future change in the CCLME as a result of climate variations. The current state of knowledge of the relationship between the Pacific hake and its environment is reviewed, highlighting emerging ideas compared to those of the past, and priorities for future research are suggested.
Resumo:
Weight-on-length (W-L) relationships for 2,482 dolphinfish, Coryphaena hippurus, and 1,161 wahoo, Acanthocybium solandri, were examined. Data on fork length, whole (round) weight, and sex were collected for dolphinfish at the Honolulu fish auction from March 1988 through November 1989. Unsexed weight and length data for wahoo were collected at the auction from July 1988 through November 1989. We also used sex specific weight and length data of 171 wahoo collected during 1977–1985 research cruises for analysis. Coefficients of W-L regressions were significantly different between the sexes for dolphinfish. Coefficients did not significantly differ between the sexes for wahoo based on research cruise data. In a general linear model evaluating month as a categorical factor, month was significant for female dolphinfish, male dolphinfish, and wahoo with sexes pooled. W-L and length-on-weight (L-W) relationships were fitted by nonlinear regression for all dolphinfish, female dolphinfish, male dolphinfish, and all wahoo sexes pooled. W-L relationships for monthly samples of female dolphinfish, male dolphinfish, and all wahoo with sexes pooled were also fitted by nonlinear regression. Predicted mean weight at length for wahoo was highest at the beginning of the spawning season in June and lowest after the spawning season in September. Maximum and minimum predicted mean weight at length for both sexes of dolphinfish did not correspond with the peak spawning period (March–May). Plausible migration models in conjunction with reproductive behavior were examined to explain the variability in monthly predicted mean weight at length for dolphinfish.
Resumo:
The U.S. Fish Commission Steamer Albatross made its first cruise to Alaska in 1888 primarily to research the Pacific cod, Gadus macrocephalus; however, Pacific salmon Oncorhynchus spp., was also to be studied, if time permitted. In 1889, concern for salmon overharvesting prompted Congress to authorize an investigation into the habits, abundance, and distribution of Alaska’s salmon, and in 1890 the Albatross returned to Alaska. Over the next 20+ years the Albatross made many other productive and pioneering research voyages to Alaska, the last in 1914.
Resumo:
ABSTRACT—Bycatch mortality of Pacific halibut, Hippoglossus stenolepis, in nontarget fisheries is composed primarily of immature fish, and substantial reductions in yield to directed halibut fisheries result from this bycatch. Distant-water bottomtrawl fleets operating off the North American coast, beginning in the mid 1960’s, experienced bycatch mortality of over 12,000 t annually. Substantial progress on reducing this bycatch was not achieved until the of extension fisheries jurisdictions by the United States and Canada in 1977. Bycatch began to increase again during the expansion of domestic catching capacity for groundfish, and by the early 1990’s it had returned to levels seen during the period of foreign fishing. Collaborative action by Canada and the United States through the International Pacific Halibut Commission has resulted in substantial reductions in bycatch mortality in some areas. Methods of control have operated at global, fleet, and individual vessel levels. We evaluate the hierarchy of effectiveness for these control measures and identify regulatory needs for optimum effects. New monitoring technologies offer the promise of more cost-effective approaches to bycatch reduction.
Resumo:
Twenty-nine verified records of white sharks, Carcharodon carcharias, from British Columbia and Alaska waters (1961–2004) are presented. Record locations ranged from lat. 48°48ʹN to lat. 60°17ʹN, including the northernmost occurrence of a white shark and the first report of this species from the central Bering Sea. White sharks recorded from the study area were generally large, with 95% falling between 3.8 and 5.4 m in length. Mature white sharks of both sexes occur in British Columbia and Alaska waters, although they do not necessarily reproduce there. White sharks actively feed in the study area; their diet is similar to that reported for this species from Washington and northern California waters. Sea surface temperature (SST) concurrent with white shark records from the study area ranged from 16°C to between 6.4°C and 5.0°C, extending the lower extreme of the range of SST from which this species has been previously reported. White shark strandings are rarely reported, yet 16 (55%) of the records in this study are of beached animals; strandings generally occurred later in the year and at lower latitudes than nonstrandings. No significant correlation was found between white shark records in the study area and El Niño events and no records occurred during La Niña events. The data presented here indicate that white sharks are more abundant in the cold waters of British Columbia and Alaska than previous records suggest.