576 resultados para asesino serial
Resumo:
Annual cycles of relative abundance are described for phytoplankton species collected from Monterey Bay, California, from July 1974 to June 1976, and the population dynamics related to the annual hydrographic cycle. Neritic diatom species dominated the population during the Upwelling and Oceanic periods, with dinoflagellate species becoming numerically more important during the Davidson period. Recurrent species groups identified using Fager's regroup analysis revealed the presence of a large neritic group of overwhelming numerical importance. This group is composed of indigenous species and is present in the bay during most of the year. Conspicuous changes in the phytoplankton population occurred predominantly among species within this group. During the Davidson period, the advection of southern waters into the bay may temporarily displace the endemic species with dinoflagellates becoming numerically more important. A red tide bloom of Gonyaulax polyedra occurred during this period in 1974, which dominated the phytoplankton population for a period of six weeks. The population dynamics of two hydrographically different stations were compared. A station located over the deep waters of the submarine canyon exhibited much lower phytoplankton standing stocks than a station located over the shelf area in the south of the bay, but seasonal changes in relative abundance and species composition were similar. Physical and chemical differences observed between the two stations appear to be the result of the presence of more recently upwelled water in the canyon area, and higher biological utilization in the south of the bay. A close correlation of species diversity with the depth of the mixed layer was observed, with diversity rising with the shoaling of the thermocline. It is suggested that this may reflect the introduction of new species from below the thermocline into the mixed layer as a result of upwelling activity. It is also suggested that this may be an artifact due to sampling problems associated with internal waves. (Document contains 100 pages.)
Resumo:
(Document contains 117 pages.)
Resumo:
(Document pdf contains 54 pages)
Resumo:
Vancouver Lake, located adjacent to the Columbia River and just north of the Vancouver-Portland metropolitan area, is a "dying" lake. Although all lakes die naturally in geologic time through the process of eutrophication,* Vancouver Lake is dying more rapidly due to man's activities and due to the resultant increased accumulation of sediment, chemicals, and wastes. Natural eutrophication takes thousands of years, whereas man-made modifications can cause the death of a lake in decades. Vancouver Lake does, however, have the potential of becoming a valuable water resource asset for the area, due particularly to its location near the Columbia River which can be used as a source of "flushing" water to improve the quality of Vancouver Lake. (Document pdf contains 59 pages) Community interest in Vancouver Lake has waxed and waned. Prior to World War II, there were relatively few plans for discussions about the Lake and its surrounding land area. A plan to drain the Lake for farming was prohibited by the city council and county commissioners. Interest increased in 1945 when the federal government considered developing the Lake as a berthing harbor for deactivated ships at which time a preliminary proposal was prepared by the City. The only surface water connection between Vancouver Lake and the Columbia River, except during floods, is Lake River. The Lake now serves as a receiving body of water for Lake River tidal flow and surface flow from creeks and nearby land areas. Seasonally, these flows are heavily laden with sediment, septic tank drainage, fertilizers and drainage from cattle yards. Construction and gravel pit operations increase the sediment loads entering the Lake from Burnt Bridge Creek and Salmon Creek (via Lake River by tidal action). The tidal flats at the north end of Vancouver Lake are evidence of this accumulation. Since 1945, the buildup of sediment and nutrients created by man's activities has accelerated the growth of the large water plants and algae which contribute to the degeneration of the Lake. Flooding from the Columbia River, as in 1968, has added to the deposition in Vancouver Lake. The combined effect of these human and natural activities has changed Vancouver Lake into a relatively useless body of shallow water supporting some wildlife, rough fish, and shallow draft boats. It is still pleasant to view from the hills to the east. Because precipitation and streamflow are the lowest during the summer and early fall, water quantity and quality conditions are at their worst when the potential of the Lake for water-based recreation is the highest. Increased pollution of the Lake has caused a larger segment of the community to become concerned. Land use and planning studies were undertaken on the Columbia River lowlands and a wide variety of ideas were proposed for improving the quality of the water-land environment in order to enhance the usefulness of the area. In 1966, the College of Engineering Research Division at Washington State University (WSU0 in Pullman, Washington, was contacted by the Port of Vancouver to determine possible alternatives for restoring Vancouver Lake. Various proposals were prepared between 1966 and 1969. During the summer and fall of 1967, a study was made by WSU on the existing water quality in the Lake. In 1969, the current studies were funded to establish a data base for considering a broad range of alternative solutions for improving the quantity and quality of Vancouver Lake. Until these studies were undertaken, practically no data on a continuous nature were available on Vancouver Lake, Lake River, or their tributaries. (Document pdf contains 59 pages)