359 resultados para Coastal Rábitas
Resumo:
The overall goal of the MARine and Estuarine goal Setting (MARES) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made by both policy makers and by natural resource and environmental management agencies. The document that follows briefly describes the MARES project and this systematic process. It then describes in considerable detail the resulting output from the first two steps in the process, the development of conceptual diagrams and an Integrated Conceptual Ecosystem Model (ICEM) for the second subregion to be addressed by MARES, the Southwest Florida Shelf (SWFS). What follows with regard to the SWFS is the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations beginning with a workshop held August 19-20, 2010 at Florida Gulf Coast University in Fort Myers, Florida.
Resumo:
NOAA’s National Status and Trends Program (NS&T) collected oyster tissue and sediments for quantification of polycyclic aromatic hydrocarbons (PAHs) and petroleum associated metals before and after the landfall of oil from the Deepwater Horizon incident of 2010. These new pre- and post- landfall measurements were put into a historical context by comparing them to data collected in the region over three decades during Mussel Watch monitoring. Overall, the levels of PAHs in both sediment and oysters both pre- and post-landfall were within the range of historically observed values for the Gulf of Mexico. Some specific sites did have elevated PAH levels. While those locations generally correspond to areas in which oil reached coastal areas, it cannot be conclusively stated that the contamination is due to oiling from the Deepwater Horizon incident at these sites due to the survey nature of these sampling efforts. Instead, our data indicate locations along the coast where intensive investigation of hydrocarbon contamination should be undertaken. Post-spill concentrations of oil-related trace metals (V, Hg, Ni) were generally within historically observed ranges for a given site, however, nickel and vanadium were elevated at some sites including areas in Mississippi Sound and Galveston, Terrebonne, Mobile, Pensacola, and Apalachicola Bays. No oyster tissue metal body burden exceeded any of the United States Food and Drug Administration’s (FDA) shellfish permissible action levels for human consumption.
Resumo:
A study was initiated with field work in May 2007 to assess the status of ecological condition and stressor impacts throughout the U.S. continental shelf off South Florida, focusing on soft-bottom habitats, and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Anclote Key on the western coast of Florida to West Palm Beach on the eastern coast of Florida, inclusive of the Florida Keys National Marine Sanctuary (FKNMS), and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — U.S. Environmental Protection Agency’s (EPA) Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). The study was conducted through a large cooperative effort by National Oceanic and Atmospheric Administration (NOAA)/National Centers for Coastal Ocean Science (NCCOS), EPA, U.S. Geological Survey (USGS), NOAA/Oceanic and Atmospheric Research (OAR)/Atlantic Oceanographic and Meteorological Laboratory in Miami, FKNMS, and the Florida Fish and Wildlife Conservation Commission (FWC). The majority of the South Florida shelf had high levels of dissolved oxygen (DO) in near-bottom water (> 5 mg L-1) indicative of “good” water quality.. DO levels in bottom waters exceeded this upper threshold at 98.8% throughout the coastal-ocean survey area. Only 1.2% of the region had moderate DO levels (2-5 mg/L) and no part of the survey area had DO <2.0 mg/L. In addition, offshore waters throughout the region had relatively low levels of total suspended solids (TSS), nutrients, and chlorophyll a indicative of oligotrophic conditions. Results suggested good sediment quality as well. Sediments throughout the region, which ranged from sands to intermediate muddy sands, had low levels of total organic carbon (TOC) below bioeffect guidelines for benthic organisms. Chemical contaminants in sediments were also mostly at low, background levels. For example, none of the stations had chemicals in excess of corresponding Effects-Range Median (ERM) probable bioeffect values or more than one chemical in excess of lower-threshold Effects-Range Low (ERL) values. Cadmium was the only chemical that occurred at moderate concentrations between corresponding ERL and ERM values. Sixty fish samples from 28 stations were collected and analyzed for chemical contaminants. Eleven of these samples (39% of sites) had moderate levels of contaminants, between lower and upper non-cancer human-health thresholds, and ten (36% of sites) had high levels of contaminants above the upper threshold.
Resumo:
The Chesapeake Bay is the largest estuary in the United States. It is a unique and valuable national treasure because of its ecological, recreational, economic and cultural benefits. The problems facing the Bay are well known and extensively documented, and are largely related to human uses of the watershed and resources within the Bay. Over the past several decades as the origins of the Chesapeake’s problems became clear, citizens groups and Federal, State, and local governments have entered into agreements and worked together to restore the Bay’s productivity and ecological health. In May 2010, President Barack Obama signed Executive Order number 13508 that tasked a team of Federal agencies to develop a way forward in the protection and restoration of the Chesapeake watershed. Success of both State and Federal efforts will depend on having relevant, sound information regarding the ecology and function of the system as the basis of management and decision making. In response to the executive order, the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science (NCCOS) has compiled an overview of its research in Chesapeake Bay watershed. NCCOS has a long history of Chesapeake Bay research, investigating the causes and consequences of changes throughout the watershed’s ecosystems. This document presents a cross section of research results that have advanced the understanding of the structure and function of the Chesapeake and enabled the accurate and timely prediction of events with the potential to impact both human communities and ecosystems. There are three main focus areas: changes in land use patterns in the watershed and the related impacts on contaminant and pathogen distribution and concentrations; nutrient inputs and algal bloom events; and habitat use and life history patterns of species in the watershed. Land use changes in the Chesapeake Bay watershed have dramatically changed how the system functions. A comparison of several subsystems within the Bay drainages has shown that water quality is directly related to land use and how the land use affects ecosystem health of the rivers and streams that enter the Chesapeake Bay. Across the Chesapeake as a whole, the rivers that drain developed areas, such as the Potomac and James rivers, tend to have much more highly contaminated sediments than does the mainstem of the Bay itself. In addition to what might be considered traditional contaminants, such as hydrocarbons, new contaminants are appearing in measurable amounts. At fourteen sites studied in the Bay, thirteen different pharmaceuticals were detected. The impact of pharmaceuticals on organisms and the people who eat them is still unknown. The effects of water borne infections on people and marine life are known, however, and the exposure to certain bacteria is a significant health risk. A model is now available that predicts the likelihood of occurrence of a strain of bacteria known as Vibrio vulnificus throughout Bay waters.
Resumo:
In June 2008, the NOAA National Ocean Service (NOS), in conjunction with the EPA National Health and Environmental Effects Laboratory (NHEERL), conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters within the boundaries of Stellwagen Bank National Marine Sanctuary (SBNMS). The sanctuary lies approximately 20 nautical miles east of Boston, MA in the southwest Gulf of Maine between Cape Ann and Cape Cod and encompassing 638 square nautical miles (2,181 km2). A total of 30 stations were targeted for sampling using standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna, fish tissue contaminant levels). Depths ranged from 31 – 137 m throughout the study area. About 76 % of the area had sediments composed of sands (< 20 % silt-clay), 17 % of the area was composed of intermediate muddy sands (20 – 80 % silt-clay), and 7 % of the sampled area consisted of mud (> 80 % siltclay). About 70 % of the area (represented by 21 sites) had sediment total organic carbon (TOC) concentrations < 5 mg/g and all but one site (located in Stellwagen Basin) had levels of TOC < 20 mg/g, which is well below the range potentially harmful to benthic fauna (> 50 mg/g). Surface salinities ranged from 30.6 – 31.5 psu, with the majority of the study region (approximately 80 % of the area) having surface salinities between 30.8 and 31.4 psu. Bottom salinities varied between 32.1 and 32.5 psu, with bottom salinities at all sites having values above the range of surface salinities. Surface-water temperatures varied between 12.1 and 16.8 ºC, while near-bottom waters ranged in temperature from 4.4 – 6.2 ºC. An index of density stratification (Δσt) indicated that the waters of SBNMS were stratified at the time of sampling. Values of Δσt at 29 of the 30 sites sampled in this study (96.7 % of the study area) varied from 2.1 – 3.2, which is within the range considered to be indicative of strong vertical stratification (Δσt > 2) and typical of the western Gulf of Maine in summer. Levels of dissolved oxygen (DO) were confined to a fairly narrow range in surface (8.8 – 10.4 mg/L) and bottom (8.5 – 9.6 mg/L) waters throughout the survey area. These levels are within the range considered indicative of good water quality (> 5 mg/L) with respect to DO. None of these waters had DO at low levels (< 2 mg/L) potentially harmful to benthic fauna and fish.
Resumo:
A study was conducted, in association with the Alabama and Mississippi National Estuarine Research Reserves (NERRs) in the Gulf of Mexico (GoM) as well as the Georgia, South Carolina, and North Carolina NERRs in the Southeast (SE), to evaluate the impacts of coastal development on tidal creek sentinel habitats, including potential impacts to human health and well-being. Uplands associated with Southeast and Gulf of Mexico tidal creeks, and the salt marshes they drain, are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land cover data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites (Holland et al. 2004, Sanger et al. 2008). The primary objective of this work was to define the relationships between coastal development with its concomitant land cover changes, and non-point source pollution loading and the ecological and human health and wellbeing status of tidal creek ecosystems. Nineteen tidal creek systems, located along the Southeastern United States coast from southern North Carolina to southern Georgia, and five Gulf of Mexico systems from Alabama and Mississippi were sampled during summer (June-August) 2005, 2006 (SE) and 2008 (GoM). Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 29 intertidal and 24 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminant levels including emerging contaminants), pathogen and viral indicators (e.g., fecal coliform, enterococci, F+ coliphages, F- coliphages), and abundance and tissue contamination of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants). Tidal creeks have been identified as a sentinel habitat to assess the impacts of coastal development on estuarine areas in the southeastern US. A conceptual model for tidal creeks in the southeastern US identifies that human alterations (stressors) of upland in a watershed such as increased impervious cover will lead to changes in the physical and chemical environment such as microbial and nutrient pollution (exposures), of a receiving water body which then lead to changes in the living resources (responses). The overall objective of this study is to evaluate the applicability of the current tidal creek classification framework and conceptual model linking tidal creek ecological condition to potential impacts of development and urban growth on ecosystem value and function in the Gulf of Mexico US in collaboration with Gulf of Mexico NERR sites. The conceptual model was validated for the Gulf of Mexico US tidal creeks. The tidal creek classification system developed for the southeastern US could be applied to the Gulf of Mexico tidal creeks; however, some differences were found that warrant further examination. In particular, pollutants appeared to translate further downstream in the Gulf of Mexico US compared to the southeastern US. These differences are likely the result of the morphological and oceanographic differences between the two regions. Tidal creeks appear to serve as sentinel habitats to provide an early warning of the ensuing harm to the larger ecosystem in both the Southeastern and Gulf of Mexico US tidal creeks.
Resumo:
We review the progress made in the emerging field of coastal seascape ecology, i.e. the application of landscape ecology concepts and techniques to the coastal marine environment. Since the early 1990s, the landscape ecology approach has been applied in several coastal subtidal and intertidal biogenic habitats across a range of spatial scales. Emerging evidence indicates that animals in these seascapes respond to the structure of patches and patch mosaics in different ways and at different spatial scales, yet we still know very little about the ecological significance of these relationships and the consequences of change in seascape patterning for ecosystem functioning and overall biodiversity. Ecological interactions that occur within patches and among different types of patches (or seascapes) are likely to be critically important in maintaining primary and secondary production, trophic transfer, biodiversity, coastal protection, and supporting a wealth of ecosystem goods and services. We review faunal responses to patch and seascape structure, including effects of fragmentation on 5 focal habitats: seagrass meadows, salt marshes, coral reefs, mangrove forests, and oyster reefs. Extrapolating and generalizing spatial relationships between ecological patterns and processes across scales remains a significant challenge, and we show that there are major gaps in our understanding of these relationships. Filling these gaps will be crucial for managing and responding to an inevitably changing coastal environment. We show that critical ecological thresholds exist in the structural patterning of biogenic ecosystems that, when exceeded, cause abrupt shifts in the distribution and abundance of organisms. A better understanding of faunal–seascape relationships, including the identifications of threshold effects, is urgently needed to support the development of more effective and holistic management actions in restoration, site prioritization, and forecasting the impacts of environmental change.
Resumo:
Landscape ecology concepts developed from terrestrial systems have recently emerged as theoretical and analytical frameworks that are equally useful for evaluating the ecological consequences of spatial patterns and structural changes in the submerged landscapes of coastal ecosystems. The benefits of applying a spatially-explicit perspective to resource management and restoration planning in the coastal zone are rapidly becoming apparent. This Theme Section on the application of landscape ecology to the estuarine and coastal environment emerged from a special symposium at the Coastal and Estuarine Research Federation (CERF) 20th Biennial Conference (Estuaries and Coasts in a Changing World) held in Portland, Oregon, USA, in November 2009. The 7 contributions in this Theme Section collectively provide substantial insights into the current status and application of the landscape approach in shallow marine environments, and identify significant knowledge gaps, as well as potential directions for the future advancement of ‘seascape ecology’.
Resumo:
The primary objective of this project, “the Assessment of Existing Information on Atlantic Coastal Fish Habitat”, is to inform conservation planning for the Atlantic Coastal Fish Habitat Partnership (ACFHP). ACFHP is recognized as a Partnership by the National Fish Habitat Action Plan (NFHAP), whose overall mission is to protect, restore, and enhance the nation’s fish and aquatic communities through partnerships that foster fish habitat conservation. This project is a cooperative effort of NOAA/NOS Center for Coastal Monitoring and Assessment (CCMA) Biogeography Branch and ACFHP. The Assessment includes three components; 1. a representative bibliographic and assessment database, 2. a Geographical Information System (GIS) spatial framework, and 3. a summary document with description of methods, analyses of habitat assessment information, and recommendations for further work. The spatial bibliography was created by linking the bibliographic table developed in Microsoft Excel and exported to SQL Server, with the spatial framework developed in ArcGIS and exported to GoogleMaps. The bibliography is a comprehensive, searchable database of over 500 selected documents and data sources on Atlantic coastal fish species and habitats. Key information captured for each entry includes basic bibliographic data, spatial footprint (e.g. waterbody or watershed), species and habitats covered, and electronic availability. Information on habitat condition indicators, threats, and conservation recommendations are extracted from each entry and recorded in a separate linked table. The spatial framework is a functional digital map based on polygon layers of watersheds, estuarine and marine waterbodies derived from NOAA’s Coastal Assessment Framework, MMS/NOAA’s Multipurpose Marine Cadastre, and other sources, providing spatial reference for all of the documents cited in the bibliography. Together, the bibliography and assessment tables and their spatial framework provide a powerful tool to query and assess available information through a publicly available web interface. They were designed to support the development of priorities for ACFHP’s conservation efforts within a geographic area extending from Maine to Florida, and from coastal watersheds seaward to the edge of the continental shelf. The Atlantic Coastal Fish Habitat Partnership has made initial use of the Assessment of Existing Information. Though it has not yet applied the AEI in a systematic or structured manner, it expects to find further uses as the draft conservation strategic plan is refined, and as regional action plans are developed. It also provides a means to move beyond an “assessment of existing information” towards an “assessment of fish habitat”, and is being applied towards the National Fish Habitat Action Plan (NFHAP) 2010 Assessment. Beyond the scope of the current project, there may be application to broader initiatives such as Integrated Ecosystem Assessments (IEAs), Ecosystem Based Management (EBM), and Marine Spatial Planning (MSP).
Resumo:
The occurrence of hypoxia, or low dissolved oxygen, is increasing in coastal waters worldwide and represents a significant threat to the health and economy of our Nation’s coasts and Great Lakes. This trend is exemplified most dramatically off the coast of Louisiana and Texas, where the second largest eutrophication-related hypoxic zone in the world is associated with the nutrient pollutant load discharged by the Mississippi and Atchafalaya Rivers. Aquatic organisms require adequate dissolved oxygen to survive. The term “dead zone” is often used in reference to the absence of life (other than bacteria) from habitats that are devoid of oxygen. The inability to escape low oxygen areas makes immobile species, such as oysters and mussels, particularly vulnerable to hypoxia. These organisms can become stressed and may die due to hypoxia, resulting in significant impacts on marine food webs and the economy. Mobile organisms can flee the affected area when dissolved oxygen becomes too low. Nevertheless, fish kills can result from hypoxia, especially when the concentration of dissolved oxygen drops rapidly. New research is clarifying when hypoxia will cause fish kills as opposed to triggering avoidance behavior by fish. Further, new studies are better illustrating how habitat loss associated with hypoxia avoidance can impose ecological and economic costs, such as reduced growth in commercially harvested species and loss of biodiversity, habitat, and biomass. Transient or “diel-cycling” hypoxia, where conditions cycle from supersaturation of oxygen late in the afternoon to hypoxia or anoxia near dawn, most often occurs in shallow, eutrophic systems (e.g., nursery ground habitats) and may have pervasive impacts on living resources because of both its location and frequency of occurrence.
Resumo:
Bottlenose dolphins (Tursiops truncatus) inhabit estuarine waters near Charleston, South Carolina (SC) feeding, nursing and socializing. While in these waters, dolphins are exposed to multiple direct and indirect threats such as anthropogenic impacts (egs. harassment with boat traffic and entanglements in fishing gear) and environmental degradation. Bottlenose dolphins are protected under the Marine Mammal Protection Act of 1972. Over the years, the percentage of strandings in the estuaries has increased in South Carolina and, specifically, recent stranding data shows an increase in strandings occurring in Charleston, SC near areas of residential development. During the same timeframe, Charleston experienced a shift in human population towards the coastline. These two trends, rise in estuarine dolphin strandings and shift in human population, have raised questions on whether the increase in strandings is a result of more detectable strandings being reported, or a true increase in stranding events. Using GIS, the trends in strandings were compared to residential growth, boat permits, fishing permits, and dock permits in Charleston County from 1994-2009. A simple linear regression analysis was performed to determine if there were any significant relationships between strandings, boat permits, commercial fishing permits, and crabpot permits. The results of this analysis show the stranding trend moves toward Charleston Harbor and adjacent rivers over time which suggests the increase in strandings is related to the strandings becoming more detectable. The statistical analysis shows that the factors that cause human interaction strandings such as boats, commercial fishing, and crabpot line entanglements are not significantly related to strandings further supporting the hypothesis that the increase in strandings are due to increased observations on the water as human coastal population increases and are not a natural phenomenon. This study has local and potentially regional marine spatial planning implications to protect coastal natural resources, such as the bottlenose dolphin, while balancing coastal development.
Resumo:
The overall purpose of this project was to collect available information on the characteristics of essential fish habitats in protected and non-protected marine areas around the islands of Puerto Rico. Specifically, this project compiled historical information on benthic habitats and the status of marine resources into a Geographic Information System (GIS) by digitizing paper copies of existing marine geologic maps that were developed for the Caribbean Fishery Management Council (CFMC) for areas around the Commonwealth of Puerto Rico. In addition, information on benthic habitat types, Essential Fish Habitat (EFH) requirements, and fishing and non-fishing impacts to marine resources were compiled for two priority areas: La Parguera and Vieques. The information obtained will help to characterize and select habitats for future monitoring of impacts of fishing and non-fishing activities and to develop management recommendations for conservation of important marine habitats. The project focused specifically on areas identified as priorities for conservation by the Puerto Rico Department of Natural and Environmental Resources (DNER) and the Local Action Strategy Overfishing Group.
Resumo:
Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 square kilometers per year since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% per year before 1940 to 7% per year since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth.
Resumo:
Models that help predict fecal coliform bacteria (FCB) levels in environmental waters can be important tools for resource managers. In this study, we used animal activity along with antibiotic resistance analysis (ARA), land cover, and other variables to build models that predict bacteria levels in coastal ponds that discharge into an estuary. Photographic wildlife monitoring was used to estimate terrestrial and aquatic wildlife activity prior to sampling. Increased duck activity was an important predictor of increased FCB in coastal ponds. Terrestrial animals like deer and raccoon, although abundant, were not significant in our model. Various land cover types, rainfall, tide, solar irradiation, air temperature, and season parameters, in combination with duck activity, were significant predictors of increased FCB. It appears that tidal ponds allow for settling of bacteria under most conditions. We propose that these models can be used to test different development styles and wildlife management techniques to reduce bacterial loading into downstream shellfish harvesting and contact recreation areas.