252 resultados para Jr.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimates of larval supply can provide information on year-class strength that is useful for fisheries management. However, larval supply is difficult to monitor because long-term, high-frequency sampling is needed. The purpose of this study was to subsample an 11-year record of daily larval supply of blue crab (Callinectes sapidus) to determine the effect of sampling interval on variability in estimates of supply. The coefficient of variation in estimates of supply varied by 0.39 among years at a 2-day sampling interval and 0.84 at a 7-day sampling interval. For 8 of the 11 years, there was a significant correlation between mean daily larval supply and lagged fishery catch per trip (coefficient of correlation [r]=0.88). When these 8 years were subsampled, a 2-day sampling interval yielded a significant correlation with fishery data only 64.5% of the time and a 3-day sampling interval never yielded a significant correlation. Therefore, high-frequency sampling (daily or every other day) may be needed to characterize interannual variability in larval supply.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Southeast Bering Sea Carrying Capacity (SEBSCC, 1996–2002) was a NOAA Coastal Ocean Program project that investigated the marine ecosystem of the southeastern Bering Sea. SEBSCC was co-managed by the University of Alaska Fairbanks, NOAA Alaska Fisheries Science Center, and NOAA Pacific Marine Environmental Laboratory. Project goals were to understand the changing physical environment and its relationship to the biota of the region, to relate that understanding to natural variations in year-class strength of walleye pollock (Theragra chalcogramma), and to improve the flow of ecosystem information to fishery managers. In addition to SEBSCC, the Inner Front study (1997–2000), supported by the National Science Foundation (Prolonged Production and Trophic Transfer to Predators: Processes at the Inner Front of the S.E. Bering Sea), was active in the southeastern Bering Sea from 1997 to 1999. The SEBSCC and Inner Front studies were complementary. SEBSCC focused on the middle and outer shelf. Inner Front worked the middle and inner shelf. Collaboration between investigators in the two programs was strong, and the joint results yielded a substantially increased understanding of the regional ecosystem. SEBSCC focused on four central scientific issues: (1) How does climate variability influence the marine ecosystem of the Bering Sea? (2) What determines the timing, amount, and fate of primary and secondary production? (3) How do oceanographic conditions on the shelf influence distributions of fish and other species? (4) What limits the growth of fish populations on the eastern Bering Sea shelf? Underlying these broad questions was a narrower focus on walleye pollock, particularly a desire to understand ecological factors that affect year-class strength and the ability to predict the potential of a year class at the earliest possible time. The Inner Front program focused on the role of the structural front between the well-mixed waters of the coastal domain and the two-layer system of the middle domain. Of special interest was the potential for prolonged post-spring-bloom production at the front and its role in supporting upper trophic level organisms such as juvenile pollock and seabirds. Of concern to both programs was the role of interannual and longer-term variability in marine climates and their effects on the function of sub-arctic marine ecosystems and their ability to support upper trophic level organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall goal of this assessment was to evaluate the effects of nutrient-source reductions that may be implemented in the Mississippi River Basin (MRB) to reduce the problem of low oxygen conditions (hypoxia) in the nearshore Gulf of Mexico. Such source reductions would affect the quality of surface waters—streams, rivers, and reservoirs—in the drainage basin itself, as well as nearshore Gulf waters. The task group’s work was divided into addressing the effects of nutrient-source reductions on: (1) surface waters in the MRB and (2) hypoxia in the Gulf of Mexico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nutrient overenrichment from human activities is one of the major stresses affecting coastal ecosystems. There is increasing concern in many areas around the world that an oversupply of nutrients from multiple sources is having pervasive ecological effects on shallow coastal and estuarine areas. These effects include reduced light penetration, loss of aquatic habitat, harmfid algal blooms, a decrease in dissolved oxygen (or hypoxia), and impacts on living resources. The largest zone of oxygen-depleted coastal waters in the United States, and the entire western Atlantic Ocean, is found in the northern Gulf of Mexico on the Louisiana-Texas continental shelf. This zone is influenced by the freshwater discharge and nutrient flux of the Mississippi River system. This report describes the seasonal, interannual, and long-term variability in hypoxia in the northern Gulf of Mexico and its relationship to nutrient loading. It also documents the relative roles of natural and human-induced factors in determining the size and duration of the hypoxic zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continental shelf adjacent to the Mississippi River is a highly productive system, often referred to as the fertile fisheries crescent. This productivity is attributed to the effects of the river, especially nutrient delivery. In the later decades of the 2oth century, though, changes in the system were becoming evident. Nutrient loads were seen to be increasing and reports of hypoxia were becoming more frequent. During most recent summers, a broad area (up to 20,000 krn2) of near bottom, inner shelf waters immediately west of the Mississippi River delta becomes hypoxic (dissolved oxygen concentrations less than 2 mgll). In 1990, the Coastal Ocean Program of the National Oceanic and Atmospheric Administration initiated the Nutrient Enhanced Coastal Ocean Productivity (NECOP) study of this area to test the hypothesis that anthropogenic nutrient addition to the coastal ocean has contributed to coastal eutrophication with a significant impact on water quality. Three major goals of the study were to determine the degree to which coastal productivity in the region is enhanced by terrestrial nutrient input, to determine the impact of enhanced productivity on water quality, and to determine the fate of fixed carbon and its impact on living marine resources. The study involved 49 federal and academic scientists from 14 institutions and cost $9.7 million. Field work proceeded from 1990 through 1993 and analysis through 1996, although some analyses continue to this day. The Mississippi River system delivers, on average, 19,000 m3/s of water to the northern Gulf of Mexico. The major flood of the river system occurs in spring following snow melt in the upper drainage basin. This water reaches the Gulf of Mexico through the Mississippi River birdfoot delta and through the delta of the Atchafalaya River. Much of this water flows westward along the coast as a highly stratified coastal current, the Louisiana Coastal Current, isolated from the bottom by a strong halocline and from mid-shelf waters by a strong salinity front. This stratification maintains dissolved and particulate matter from the rivers, as well as recycled material, in a well-defined flow over the inner shelf. It also inhibits the downward mixing of oxygenated surface waters from the surface layer to the near bottom waters. This highly stratified flow is readily identifiable by its surface turbidity, as it carries much of the fine material delivered with the river discharge and resuspended by nearshore wave activity. A second significant contribution to the turbidity of the surface waters is due to phytoplankton in these waters. This turbidity reduces the solar radiation penetrating to depth through the water column. These two aspects of the coastal current, isolation of the inner shelf surface waters and maintenance of a turbid surface layer, precondition the waters for the development of near bottom summer hypoxia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report is the second in a series from a project to assess land-based sources of pollution (LBSP) and effects in the St. Thomas East End Reserves (STEER) in St. Thomas, USVI, and is the result of a collaborative effort between NOAA’s National Centers for Coastal Ocean Science, the USVI Department of Planning and Natural Resources, the University of the Virgin Islands, and The Nature Conservancy. Passive water samplers (POCIS) were deployed in the STEER in February 2012. Developed by the US Geological Survey (USGS) as a tool to detect the presence of water soluble contaminants in the environment, POCIS samplers were deployed in the STEER at five locations. In addition to the February 2012 deployment, the results from an earlier POCIS deployment in May 2010 in Turpentine Gut, a perennial freshwater stream which drains to the STEER, are also reported. A total of 26 stormwater contaminants were detected at least once during the February 2012 deployment in the STEER. Detections were high enough to estimate ambient water concentrations for nine contaminants using USGS sampling rate values. From the May 2010 deployment in Turpentine Gut, 31 stormwater contaminants were detected, and ambient water concentrations could be estimated for 17 compounds. Ambient water concentrations were estimated for a number of contaminants including the detergent/surfactant metabolite 4-tert-octylphenol, phthalate ester plasticizers DEHP and DEP, bromoform, personal care products including menthol, indole, n,n-diethyltoluamide (DEET), along with the animal/plant sterol cholesterol, and the plant sterol beta-sitosterol. Only DEHP appeared to have exceeded a water quality guideline for the protection of aquatic organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report contains a chemical and biological characterization of sediments from the St. Thomas East End Reserves (STEER) in St. Thomas, U.S. Virgin Islands (USVI). The STEER Management Plan (published in 2011) identified chemical contaminants and habitat loss as high or very high threats and called for a characterization of chemical contaminants as well as an assessment of their effects on natural resources. The baseline information contained in this report on chemical contaminants, toxicity and benthic infaunal community composition can be used to assess current conditions, as well as the efficacy of future restoration activities. In this phase of the project, 185 chemical contaminants, including a number of organic (e.g., hydrocarbons and pesticides) and inorganic (e.g., metals) compounds, were analyzed from 24 sites in the STEER. Sediments were also analyzed using a series of toxicity bioassays, including amphipod mortality, sea urchin fertilization impairment, and the cytochrome P450 Human Reporter Gene System (HRGS), along with a characterization of the benthic infaunal community. Higher levels of chemical contaminants were found in Mangrove Lagoon and Benner Bay in the western portion of the study area than in the eastern area. The concentrations of polychlorinated biphenyls (PCBs), DDT (dichlorodiphenyltrichloroethane), chlordane, zinc, copper, lead and mercury were above a NOAA sediment quality guideline at one or more sites, indicating impacts may be present in more sensitive species or life stages in the benthic environment. Copper at one site in Benner Bay, however, was above a NOAA guideline indicating that effects on benthic organisms were likely. The antifoulant boat hull ingredient tributyltin, or TBT, was found at the third highest concentration in the history of NOAA’s National Status and Trends (NS&T) Program, which monitors the Nation’s coastal and estuarine waters for chemical contaminants and bioeffects. Unfortunately, there do not appear to be any established sediment quality guidelines for TBT. Results of the bioassays indicated significant sediment toxicity in Mangrove Lagoon and Benner Bay using multiple tests. The benthic infaunal communities in Mangrove Lagoon and Benner Bay appeared severely diminished.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technological innovation has made it possible to grow marine finfish in the coastal and open ocean. Along with this opportunity comes environmental risk. As a federal agency charged with stewardship of the nation’s marine resources, the National Oceanic and Atmospheric Administration (NOAA) requires tools to evaluate the benefits and risks that aquaculture poses in the marine environment, to implement policies and regulations which safeguard our marine and coastal ecosystems, and to inform production designs and operational procedures compatible with marine stewardship. There is an opportunity to apply the best available science and globally proven best management practices to regulate and guide a sustainable United States (U.S.) marine finfish farming aquaculture industry. There are strong economic incentives to develop this industry, and doing so in an environmentally responsible way is possible if stakeholders, the public and regulatory agencies have a clear understanding of the relative risks to the environment and the feasible solutions to minimize, manage or eliminate those risks. This report spans many of the environmental challenges that marine finfish aquaculture faces. We believe that it will serve as a useful tool to those interested in and responsible for the industry and safeguarding the health, productivity and resilience of our marine ecosystems. This report aims to provide a comprehensive review of some predominant environmental risks that marine fish cage culture aquaculture, as it is currently conducted, poses in the marine environment and designs and practices now in use to address these environmental risks in the U.S. and elsewhere. Today’s finfish aquaculture industry has learned, adapted and improved to lessen or eliminate impacts to the marine habitats in which it operates. What progress has been made? What has been learned? How have practices changed and what are the results in terms of water quality, benthic, and other environmental effects? To answer these questions we conducted a critical review of the large body of scientific work published since 2000 on the environmental impacts of marine finfish aquaculture around the world. Our report includes results, findings and recommendations from over 420 papers, primarily from peer-reviewed professional journals. This report provides a broad overview of the twenty-first century marine finfish aquaculture industry, with a targeted focus on potential impacts to water quality, sediment chemistry, benthic communities, marine life and sensitive habitats. Other environmental issues including fish health, genetic issues, and feed formulation were beyond the scope of this report and are being addressed in other initiatives and reports. Also absent is detailed information about complex computer simulations that are used to model discharge, assimilation and accumulation of nutrient waste from farms. These tools are instrumental for siting and managing farms, and a comparative analysis of these models is underway by NOAA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Indo-Pacific lionfish, Pterois miles and P. volitans, have recently invaded the U.S. east coast and the Caribbean and pose a significant threat to native reef fish communities. Few studies have documented reproduction in pteroines from the Indo-Pacific. This study provides a description of oogenesis and spawn formation in P. miles and P. volitans collected from offshore waters of North Carolina, U.S.A and the Bahamas. Using histological and laboratory observations, we found no differences in reproductive biology between P. miles and P. volitans. These lionfish spawn buoyant eggs that are encased in a hollow mass of mucus produced by specialized secretory cells of the ovarian wall complex. Oocytes develop on highly vascularized peduncles with all oocyte stages present in the ovary of spawning females and the most mature oocytes placed terminally, near the ovarian lumen. Given these ovarian characteristics, these lionfish are asynchronous, indeterminate batch spawners and are thus capable of sustained reproduction throughout the year when conditions are suitable. This mode of reproduction could have contributed to the recent and rapid establishment of these lionfish in the northwestern Atlantic and Caribbean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lionfish, Pterois volitans and P. miles, are native to the Indo-Pacific and have recently invaded the Western Atlantic Ocean. Strategies for control of this invasion have included limited removal programs and promotion of lionfish consumption at both local and commercial scales. We demonstrate that lionfish meat contains higher levels of healthy n-3 fatty acids than some frequently consumed native marine fish species. Mean lionfish fillet yield was 30.5% of the total body wet weight, a value that is similar to that of some grouper and porgy species. A sensory evaluation indicated that lionfish meet the acceptability threshold of most consumers.