285 resultados para ocean policy
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The seasonal cycles of coastal wind stress, adjusted sea level height (ASL), shelf currents and water temperatures off the west coast of North America (35°N to 48°N) were estimated by fitting annual and semiannual harmonics to data from 1981-1983. Longer records of monthly ASL indicate that these two harmonics adequately represent the long-term monthly average seasonal cycle, and that the current measurement period is long enough to define the seasonal cycles, with relatively small errors in magnitude and phase.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Data were extracted from the U.S. Navy Fleet Numerical Oceanographic Center Master Oceanographic Observation Data Set for a 200 km to 300 km wide coastal strip on the west coast of the United States. These data were averaged for the September through February (winter) and March through August (summer) intervals. The resulting winter temperature anomaly values show the El Nino signal in the CCC [Coastal California Current] as positive temperature anomalies from the surface to at least 300 m.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The suppression of primary productivity observed in eastern boundary ecosystems of the Pacific during El Nino episodes does not occur throughout the Gulf of California. On the contrary, analysis of the modern siliceous phytoplankton record from annually layered sediments and compilation of available primary productivity measurements indicate that production is significantly increased in the central Gulf during El Nino years compared to anti-El Nino years. Integrated observations of biological and physical variability during the spring of 1983, under the influence of the strong El Nino, show that very high primary productivity occurred along the eastern margin of the central Gulf. This resulted from the upwelling of a nutrient rich source provided by the locally formed Gulf water mass originating in the northern Gulf. Lower productivity and phytoplankton biomass were associated with the anomalous penetration of Tropical Surface Water along the western side of the Gulf.
Resumo:
Twenty-seven years (1956-1983) of oceanographic data collected at Ocean Station P (50°N/145°W), as well as supplementary data obtained in its neighborhood, have been examined for trends and interannual variability in the northeast Pacific Ocean. There is evidence that the water is warming and freshening and that the isopycnal surfaces are deepening. Trends in oxyty are mostly not significant. The most common periods for the interannual variability appear to be 2 1/2 and 6-7 years. The vertical movement of water accounts for one half of the changes in temperature and salinity and 30% of those in oxyty. Other factors, such as a shift of water masses, may also be important.
Resumo:
The effects of El Niño–Southern Oscillation events on catches of Bigeye Tuna (Thunnus obesus) in the eastern Indian Ocean (EIO) off Java were evaluated through the use of remotely sensed environmental data (sea-surface-height anomaly [SSHA], sea-surface temperature [SST], and chlorophyll a concentration), and Bigeye Tuna catch data. Analyses were conducted for the period of 1997–2000, which included the 1997–98 El Niño and 1999–2000 La Niña events. The empirical orthogonal function (EOF) was applied to examine oceanographic parameters quantitatively. The relationship of those parameters to variations in catch distribution of Bigeye Tuna was explored with a generalized additive model (GAM). The mean hook rate was 0.67 during El Niño and 0.44 during La Niña, and catches were high where SSHA ranged from –21 to 5 cm, SST ranged from 24°C to 27.5°C, and chlorophyll-a concentrations ranged from 0.04 to 0.16 mg m–3. The EOF analysis confirmed that the 1997–98 El Niño affected oceanographic conditions in the EIO off Java. The GAM results indicated that SST was better than the other environmental factors (SSHA and chlorophyll-a concentration) as an oceanographic predictor of Bigeye Tuna catches in the region. According to the GAM predictions, the highest probabilities (70–80%) for Bigeye Tuna catch in 1997–2000 occurred during oceanographic conditions during the 1997–98 El Niño event.
Resumo:
The reproductive biology of Yellowfin Tuna (Thunnus albacares) in the western Indian Ocean was investigated from samples collected in 2009 and 2010. In our study, 1012 female Yellowfin Tuna were sampled: 320 fish on board a purse seiner and 692 fish at a Seychelles cannery. We assessed the main biological parameters that describe reproductive potential: maturity, spawning seasonality, fish condition, and fecundity. The length at which 50% of the female Yellowfin Tuna population matures (L50) was estimated at 75 cm in fork length (FL) when the maturity threshold was established at the cortical alveolar stage of oocyte development. To enable comparison with previous studies, L50 also was estimated with maturity set at the vitellogenic stage of oocyte development; this assessment resulted in a higher value of L50 at 102 cm FL. The main spawning season, during which asynchrony in reproductive timing among sizes was observed, was November–February and a second peak occurred in June. Smaller females (<100 cm FL) had shorter spawning periods (December to February) than those (November to February and June) of large individuals, and signs of skip-spawning periods were observed among small females. The Yellowfin Tuna followed a “capital-income” breeder strategy during ovarian development, by mobilizing accumulated energy while using incoming energy from feeding. The mean batch fecundity for females 79–147 cm FL was estimated at 3.1 million oocytes, and the mean relative batch fecundity was 74.4 oocytes per gram of gonad-free weight. Our results, obtained with techniques defined more precisely than techniques used in previous studies in this region, provide an improved understanding of the reproductive cycle of Yellowfin Tuna in the western Indian Ocean.
Resumo:
Stichaeidae, commonly referred to as pricklebacks, are intertidal and subtidal fishes primarily of the North Pacific Ocean. Broad distribution in relatively inaccessible and undersampled habitats has contributed to a general lack of information about this family. In this study, descriptions of early life history stages are presented for 25 species representing 18 genera of stichaeid fishes from the northeastern Pacific Ocean, Bering Sea, and Arctic Ocean Basin. Six of these species also occur in the North Atlantic Ocean. Larval stages of 16 species are described for the first time. Additional information or illustrations intended to augment previous descriptions are provided for nine species. For most taxa, we present adult and larval distributions, descriptions of morphometric, meristic, and pigmentation characters, and species comparisons, and we provide illustrations for preflexion through postflexion or transformation stages. New counts of meristic features are reported for several species.
Resumo:
In March-April 2004, the National Oceanic and Atmospheric Administration (NOAA), U.S. Environmental Protection Agency (EPA), and State of Florida (FL) conducted a study to assess the status of ecological condition and stressor impacts throughout the South Atlantic Bight (SAB) portion of the U.S. continental shelf and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Cape Hatteras, North Carolina to West Palm Beach, Florida and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). Conditions of these offshore waters are compared to those of southeastern estuaries, based on data from similar EMAP/NCA surveys conducted in 2000-2004 by EPA, NOAA, and partnering southeastern states (Florida, Georgia, South Carolina, North Carolina, Virginia) (NCA database for estuaries, EPA Gulf Ecology Division, Gulf Breeze FL). Data from a total of 747 estuarine stations are included in this database. As for the offshore sites, the estuarine samples were collected using standard methods and indicators applied in previous coastal EMAP/NCA surveys including the probabilistic sampling design and multiple indicators of water quality, sediment quality, and biological condition (benthos and fish). The majority of the SAB had high levels of DO in near-bottom water (> 5 mg L-1) indicative of "good" water quality. DO levels in bottom waters exceeded this upper threshold at all sites throughout the coastal-ocean survey area and in 76% of estuarine waters. Twenty-one percent of estuarine bottom waters had moderate levels of DO between 2 and 5 mg L-1 and 3% had DO levels below 2 mg L-1. The majority of sites with DO in the low range considered to be hypoxic (< 2 mg L-1) occurred in North Carolina estuaries. There also was a notable concentration of stations with moderate DO levels (2 – 5 mg L-1) in Georgia and South Carolina estuaries. Approximately 58% of the estuarine area had moderate levels of chlorophyll a (5-10 μg L-1) and about 8% of the area had higher levels, in excess of 10 μg L-1, indicative of eutrophication. The elevated chlorophyll a levels appeared to be widespread throughout the estuaries of the region. In contrast, offshore waters throughout the region had relatively low levels of chlorophyll a with 100% of the offshore survey area having values < 5 μg L-1.
Resumo:
The continental shelf adjacent to the Mississippi River is a highly productive system, often referred to as the fertile fisheries crescent. This productivity is attributed to the effects of the river, especially nutrient delivery. In the later decades of the 2oth century, though, changes in the system were becoming evident. Nutrient loads were seen to be increasing and reports of hypoxia were becoming more frequent. During most recent summers, a broad area (up to 20,000 krn2) of near bottom, inner shelf waters immediately west of the Mississippi River delta becomes hypoxic (dissolved oxygen concentrations less than 2 mgll). In 1990, the Coastal Ocean Program of the National Oceanic and Atmospheric Administration initiated the Nutrient Enhanced Coastal Ocean Productivity (NECOP) study of this area to test the hypothesis that anthropogenic nutrient addition to the coastal ocean has contributed to coastal eutrophication with a significant impact on water quality. Three major goals of the study were to determine the degree to which coastal productivity in the region is enhanced by terrestrial nutrient input, to determine the impact of enhanced productivity on water quality, and to determine the fate of fixed carbon and its impact on living marine resources. The study involved 49 federal and academic scientists from 14 institutions and cost $9.7 million. Field work proceeded from 1990 through 1993 and analysis through 1996, although some analyses continue to this day. The Mississippi River system delivers, on average, 19,000 m3/s of water to the northern Gulf of Mexico. The major flood of the river system occurs in spring following snow melt in the upper drainage basin. This water reaches the Gulf of Mexico through the Mississippi River birdfoot delta and through the delta of the Atchafalaya River. Much of this water flows westward along the coast as a highly stratified coastal current, the Louisiana Coastal Current, isolated from the bottom by a strong halocline and from mid-shelf waters by a strong salinity front. This stratification maintains dissolved and particulate matter from the rivers, as well as recycled material, in a well-defined flow over the inner shelf. It also inhibits the downward mixing of oxygenated surface waters from the surface layer to the near bottom waters. This highly stratified flow is readily identifiable by its surface turbidity, as it carries much of the fine material delivered with the river discharge and resuspended by nearshore wave activity. A second significant contribution to the turbidity of the surface waters is due to phytoplankton in these waters. This turbidity reduces the solar radiation penetrating to depth through the water column. These two aspects of the coastal current, isolation of the inner shelf surface waters and maintenance of a turbid surface layer, precondition the waters for the development of near bottom summer hypoxia.