356 resultados para Larvae.
Resumo:
The warm season is the abundance period of the planktonic larval stages of Decapod Crustacea and of Lucifer faxonii in Ivoirian waters. Two or three maxima occur each year during the enrichments interrupting the warm and oligotropic season: February (small upwellings), June - some years - (first rains) and September - November (flood of rivers, end of cold season). Vertical distribution follows seasonal variations and varies little among the taxons. In a general way, Decapod larvae and Lucifer inhabit superficial layers in cold season and sink down during the warm season. It allows them to follow the maximum of primary production. Lucifer faxonii is breeding almost the year long. Breeds succede at rate of 3,7 weeks approximately.
Resumo:
Seasonal variations of abundance and vertical distribution over the shelf are investigated for Ostracoda, Cladocera and Cirripede larvae. The main characteristics of the environment are the periodical enrichments mainly caused by upwellings, secondly by the river floods. Ostracoda abundance variations approximately follow phytoplankton outburst. Breeding occurs all over the year. Their vertical distribution is correlated with a discontinuity layer. Diurnal migration, when it occurs in warm season consists in an upward movement during the night towards surface layers. The Ostracoda inhabit bottom layers during the day and migrate at night in intermediate and surface layers. For the main two species of Cladocera, Penilia avirostris and Evadne tergestina, abundance periods follow upwellings, especially during the main cool season. However, Cladocera can grow in low salinity but rich waters. On average Penilia inhabits more superficial waters in cold than in warm seasons. Cirripede nauplii and cypris are more abundant off rocky coasts. Their maxima are in the upwelling periods.
Resumo:
This study gives the results of oblique plankton hauls (from the sea-surface to the top of the thermocline), made during the dry season (January to March) by oceanographic vessel R.V. Capricorne during three cruises, of tuna larvae research in 1976 and 1977, between the African Coast and the Equator, from 17 degrees W to 9 degrees E.
Resumo:
The effect of organotin compounds and copper, commonly used as antifouling agent, were studied on Mercenaria mercernaria larvae. They were reared under usual hatchery conditions until they reached 190 um in diameter. The larvae were subjected to four compounds, tributylin chloride (TBT), monobutyltin chloride (MBT), trimethyltin chloride (TMT), cupric sulfate (CuSo4) plus control. Mortality was measured at 24, 48 h, and 96h. Behavioral and/or metamorphic changes were recorded in triplicate at 24-48 and 96 h. The appearance in swimming larvae of a functional foot was considered a sign of competence to set and was recorded as a "pediveliger". Swimming larvae were considered as larvae that have not yet reached their total development and they were recorded as "swimming". Larvae that did not show foot or swimming activity and were static but alive on the bottom were recorded as "bottom". TBT was found to completely inhibit swimming activity at sublethal concentrations throughout the period of observation. Copper and MBT inhibited swimming from 48 h, TMT did not inhibit swimming activity at any of the times recorded. The four compounds ranked in order of decreasing toxicity were TBT>TMT>CU>MBT.
Resumo:
Maternal effects on the quality of progeny can have direct impacts on population productivity. Rockfish are viviparous and the oil globule size of larvae at parturition has been shown to have direct effects on time until starvation and growth rate. We sampled embryos and preparturition larvae opportunistically from 89 gravid quillback rockfish (Sebastes maliger) in Southeast Alaska. Because the developmental stage and sampling period were correlated with oil globule size, they were treated as covariates in an analysis of maternal age, length, and weight effects on oil globule size. Maternal factors were related to developmental timing for almost all sampling periods, indicating that older, longer, and heavier females develop embryos earlier than younger, shorter, or lighter ones. Oil globule diameter and maternal length and weight were statistically linked, but the relationships may not be biologically significant. Weight-specific fecundity did not increase with maternal size or age, suggesting that reproductive output does not increase more quickly as fish age and grow. Age or size truncation of a rockfish population, in which timing of parturition is related to age and size, could result in a shorter parturition season. This shortening of the parturition season could make the population vulnerable to fluctuating environmental conditions.
Resumo:
Ichthyoplankton surveys have been used to provide an independent estimate of adult spawning biomass of commercially exploited species and to further our understanding of the recruitment processes in the early life stages. However, predicting recruitment has been difficult because of the complex interaction of physical and biological processes operating at different spatial and temporal scales that can occur at the different life stages. A model of first-year life-stage recruitment was applied to Georges Bank Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) stocks over the years 1977–2004 by using environmental and densitydependent relationships. The best lifestage mortality relationships for eggs, larvae, pelagic juveniles, and demersal juveniles were first determined by hindcasting recruitment estimates based on egg and larval abundance and mortality rates derived from two intensive sampling periods, 1977–87 and 1995–99. A wind-driven egg mortality relationship was used to estimate losses due to transport off the bank, and a wind-stress larval mortality relationship was derived from feeding and survival studies. A simple metric for the density-dependent effects of Atlantic cod was used for both Atlantic cod and haddock. These life stage proxies were then applied to the virtual population analysis (VPA) derived annual egg abundances to predict age-1 recruitment. Best models were determined from the correlation of predicted and VPA-derived age-1 abundance. The larval stage was the most quantifiable of any stage from surveys, whereas abundance estimates of the demersal juvenile stage were not available because of undersampling. Attempts to forecast recruitment from spawning stock biomass or egg abundance, however, will always be poor because of variable egg survival.
Resumo:
Surveys were conducted to evaluate and compare assemblage structure and trophodynamics of ichthyoplankton, and their variability, in an estuarine transition zone. Environmental gradients in the saltfront region of the Patuxent River subestuary, Chesapeake Bay, were hypothesized to define spatiotemporal distributions and assemblages of ichthyoplankton. Larval fishes, zooplankton, and hydrographic data were collected during spring through early summer 2000 and 2001. Larvae of 28 fish species were collected and species richness was similar each year. Total larval abundance was highest in the oligohaline region down-estuary of the salt front in 2000, but highest at the salt front in 2001. Larvae of anadromous fishes were most abundant at or up-estuary of the salt front in both years. Two ichthyoplankton assemblages were distinguished: 1) riverine—characterized predominantly by anadromous species (Moronidae and Alosinae); and 2) estuarine—characterized predominantly by naked goby (Gobiosoma bosc) (Gobiidae). Temperature, dissolved oxygen, salinity-associated variables (e.g., salt-front location), and concentrations of larval prey, specifically the calanoid copepod Eurytemora affinis and the cladoceran Bosmina longirostris, were important indicators of larval fish abundance. In the tidal freshwater region up-estuary of the salt front, there was substantial diet overlap between congeneric striped bass (Morone saxatilis) and white perch (M. americana) larvae, and also larvae of alewife (Alosa pseudoharengus) (overlap= 0.71–0.93). Larval abundance, taxonomic diversity, and dietary overlap were highest within and up-estuary of the salt front, which serves to both structure the ichthyoplankton community and control trophic relationships in the estuarine transition zone.
Resumo:
Pacific cod (Gadus macrocephalus) is an important component of fisheries and food webs in the North Pacific Ocean and Bering Sea. However, vital rates of early life stages of this species have yet to be described in detail. We determined the thermal sensitivity of growth rates of embryos, preflexion and postflexion larvae, and postsettlement juveniles. Growth rates (length and mass) at each ontogenetic stage were measured in three replicate tanks at four to five temperatures. Nonlinear regression was used to obtain parameters for independent stage-specific growth functions and a unified size- and temperature-dependent growth function. Specific growth rates increased with temperature at all stages and generally decreased with increases in body size. However, these analyses revealed a departure from a strict size-based allometry in growth patterns, as reduced growth rates were observed among preflexion larvae: the reduction in specific growth rate between embryos and free-swimming larvae was greater than expected based on body size differences. Growth reductions in the preflexion larvae appear to be associated with increased metabolic rates and the transition from endogenous to exogenous feeding. In future studies, experiments should be integrated across life transitions to more clearly define intrinsic ontogenetic and size-dependent growth patterns because these are critical for evaluations of spatial and temporal variation in habitat quality.
Resumo:
We investigated the feeding ecology of juvenile salmon during the critical early life-history stage of transition from shallow to deep marine waters by sampling two stations (190 m and 60 m deep) in a northeast Pacific fjord (Dabob Bay, WA) between May 1985 and October 1987. Four species of Pacific salmon—Oncorhynchus keta (chum) , O. tshawytscha (Chinook), O. gorbuscha (pink), and O. kisutch (coho)—were examined for stomach contents. Diets of these fishes varied temporally, spatially, and between species, but were dominated by insects, euphausiids, and decapod larvae. Zooplankton assemblages and dry weights differed between stations, and less so between years. Salmon often demonstrated strongly positive or negative selection for specific prey types: copepods were far more abundant in the zooplankton than in the diet, whereas Insecta, Araneae, Cephalapoda, Teleostei, and Ctenophora were more abundant in the diet than in the plankton. Overall diet overlap was highest for Chinook and coho salmon (mean=77.9%)—species that seldom were found together. Chum and Chinook salmon were found together the most frequently, but diet overlap was lower (38.8%) and zooplankton biomass was not correlated with their gut fullness (%body weight). Thus, despite occasional occurrences of significant diet overlap between salmon species, our results indicate that interspecific competition among juvenile salmon does not occur in Dabob Bay.
Resumo:
Multiyear ichthyoplankton surveys used to monitor larval fish seasonality, abundance, and assemblage structure can provide early indicators of regional ecosystem changes. Numerous ichthyoplankton surveys have been conducted in the northern Gulf of Mexico, but few have had high levels of temporal resolution and sample replication. In this study, ichthyoplankton samples were collected monthly (October 2004–October 2006) at a single station off the coast of Alabama as part of a long-term biological survey. Four seasonal periods were identified from observed and historic water temperatures, including a relatively long (June–October) “summer” period (water temperature >26°C). Fish egg abundance, total larval abundance, and larval taxonomic diversity were significantly related to water temperature (but not salinity), with peaks in the spring, spring–summer, and summer periods, respectively. Larvae collected during the survey represented 58 different families, of which engraulids, sciaenids, carangids, and clupeids were the most prominent. The most abundant taxa collected were unidentified engraulids (50%), sand seatrout (Cynoscion arenarius, 7.5%), Atlantic bumper (Chloroscombrus chrysurus, 5.4%), Atlantic croaker (Micropogonias undulatus, 4.4%), Gulf menhaden (Brevoortia patronus, 3.8%), and unidentified gobiids (3.6%). Larval concentrations for dominant taxa were highly variable between years, but the timing of seasonal occurrence for these taxa was relatively consistent. Documented increases in sea surface temperature on the Alabama shelf may have various implications for larval fish dynamics, as indicated by the presence of tropical larval forms (e.g., fistularids, labrids, scarids, and acanthurids) in our ichthyoplankton collections and in recent juvenile surveys of Alabama and northern Gulf of Mexico seagrass habitats.
Resumo:
Larval and early juvenile stages of Symphurus oligomerus are described from 24 specimens from the Gulf of California. Meristic features were 48 – 49 total vertebrae, 87–94 dorsal-fin rays, 73–77 anal-fin rays, 12 caudal-fin rays, and five hypural bones. Seven larvae and one juvenile were cleared and stained to obtain the pterygiophore formula (1-3-2-2-2) that confirmed the identification of S. oligomerus. The pigment pattern from preflexion to juvenile stage consists of three bands on the dorsal margin and two bands on the ventral margin formed by star-shaped melanophores on the left side of the body. The intestine in preflexion to postflexion larvae forms an abdominal projection that ends in a short conical appendix. The intestine is supported by three cartilaginous struts; larvae with these physical attributes are called exterilium larvae. Preflexion larvae have two elongated dorsal-fin rays, and in flexion to postflexion larvae the second to the fourth dorsalfin rays are elongate. We found an apparent connection between the size at metamorphosis of the species of Symphurus and the depth distribution range of adults such that the fish species that metamorphose at a larger size have a deeper distribution as adults and exterilium larvae seem to correspond to species that have deeper distributions.
Resumo:
Measurements of 18O/16O and 13C/12C ratios in the carbonate of juvenile gray snapper (Lutjanus griseus) sagittal otoliths collected during 2001–2005 from different southern Florida regions indicated significant variations in the ratios between Florida Bay and surrounding areas. Annual differences in isotopic composition were also observed. Classification accuracy of individual otoliths to a region averaged 80% (63% to 96%), thereby enabling the probability of assigning an unknown individual to the appropriate juvenile nursery habitat. Identification of isotopic signatures in the otoliths of gray snapper from Florida Bay and adjacent ecosystems may be important for distinguishing specific portions of the bay that are crucial nursery grounds for juveniles. Separation of gray snapper between geographic regions and nursery sites is possible and has the potential to establish a link between adult gray snapper present on offshore reefs and larvae and juveniles at nursery habitats in Florida Bay or adjacent areas.
Resumo:
Although the Florida pompano (Trachinotus carolinus) is a prime candidate for aquaculture, the problematic production of juveniles remains a major impediment to commercial culture of this species. In order to improve the understanding of larval development and to refine hatchery production techniques, this study was conducted to characterize development and growth of Florida pompano from hatching through metamorphosis by using digital photography and image analysis. Newly hatched larvae were transparent and had a large, elongate yolk sac and single oil globule. The lower and upper jaws as well as the digestive tract were not fully developed at hatching. Rotifers were observed in the stomach of larvae at three days after hatching (DAH), and Artemia spp. were observed in the stomach of larvae at 14 DAH. Growth rates calculated from total length measurements were 0.22 ±0.04, 0.23 ±0.12, and 0.35 ±0.09 mm/d for each of the larval rearing trials. The mouth gape of larvae was 0.266 ±0.075 mm at first feeding and increased with a growth rate of 0.13 ± 0.04 mm/d. Predicted values for optimal prey sizes ranged from 80 to 130 μm at 3 DAH, 160 to 267 μm at 5 DAH, and 454 to 757 μm at 10 DAH. Based on the findings of this study, a refined feeding regime was developed to provide stage- and size-specific guidelines for feeding Florida pompano larvae reared under hatchery con
Resumo:
Abstract—In the first of two companion papers, a 54-yr time series for the oyster population in the New Jersey waters of Delaware Bay was analyzed to develop biological relationships necessary to evaluate maximum sustainable yield (MSY) reference points and to consider how multiple stable points affect reference point-based management. The time series encompassed two regime shifts, one circa 1970 that ushered in a 15-yr period of high abundance, and a second in 1985 that ushered in a 20-yr period of low abundance. The intervening and succeeding periods have the attributes of alternate stable states. The biological relationships between abundance, recruitment, and mortality were unusual in four ways. First, the broodstock–recruitment relationship at low abundance may have been driven more by the provision of settlement sites for larvae by the adults than by fecundity. Second, the natural mortality rate was temporally unstable and bore a nonlinear relationship to abundance. Third, combined high abundance and low mortality, though likely requiring favorable environmental conditions, seemed also to be a self-reinforcing phenomenon. As a consequence, the abundance –mortality relationship exhibited both compensatory and depensatory components. Fourth, the geographic distribution of the stock was intertwined with abundance and mortality, such that interrelationships were functions both of spatial organization and inherent populatio
Resumo:
Larvae of the genus Icelinus are collected more frequently than any other sculpin larvae in ichthyoplankton surveys in the Gulf of Alaska and Bering Sea, and larvae of the northern sculpin (Icelinus borealis) are commonly found in the ichthyofauna in both regions. Northern sculpin are geographically isolated north of the Aleutian Islands, Alaska, which allows for a definitive description of its early life history development in the Bering Sea. A combination of morphological characters, pigmentation, preopercular spine pattern, meristic counts, and squamation in later developmental stages is essential to identify Icelinus to the species level. Larvae of northern sculpin have 35–36 myomeres, pelvic fins with one spine and two rays, a bony preopercular shelf, four preopercular spines, 3–14 irregular postanal ventral melanophores, few, if any, melanophores ventrally on the gut, and in larger specimens, two rows of ctenoid scales directly beneath the dorsal fins extending onto the caudal peduncle. The taxonomic characters of the larvae of northern sculpin in this study may help differentiate northern sculpin larvae from its congeners, and other sympatric sculpin larvae, and further aid in solving complex systematic relationships within the family Cottidae.