307 resultados para Morton Grove
Resumo:
As the global population has increased, so have human influences on the global environment. ... How can we better understand and predict these natural and potential anthropogenic variations? One way is to develop a model that can accurately describe all the components of the hydrologic cycle, rather than just the end result variables such as precipitation and soil moisture. If we can predict and simulate variations in evaporation and moisture convergence, as well as precipitation, then we will have greater confidence in our ability to at least model precipitation variations. Therefore, we describe here just how well we can model relevant aspects of the global hydrologic cycle. In particular, we determine how well we can model the annual and seasonal mean global precipitation, evaporation, and atmospheric water vapor transport.
High-resolution computation of isotopic processes in northern California using a local climate model
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We describe a coupled local climate/isotope model that can calculate Rayleigh-type processes of distillation and fractionation of hydrogen isotopes along individual air mass flowlines in the western United States.This climate model is an extension of that detailed earlier by Craig and Stamm (1990). ... Volumetric effects of evapotranspiration (ET) are included. The model allows sensitivity studies of the influence of ET recycling.
Resumo:
The PACLIM workshops celebrated their tenth anniversary from April 4 to 7, 1993. The location, as for each of the previous meetings, was the beautiful grounds of the Asilomar Conference Center in Pacific Grove, California. The setting is emblematic of the concerns of those who attend: tucked in amidst the vegetation, a short stroll away from the zone where the land and the ocean and the atmosphere have long continued a meeting of their own, although a meeting with a far more ancient pedigree.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The influence of ENSO on atmospheric circulation and precipitation over the western United States is presented from two perspectives. First, ENSO-associated circulation patterns over the North Pacific/North America sector were identified using an REOF (rotated empirical orthogonal function) analysis of the 700-mb height field and compositing these for extreme phases of the Southern Oscillation Index. ... Second, we examine the variability of precipitation during the warm and cool phases of ENSO for different locations in the western United States.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): An empirically derived multiple linear regression model is used to relate a local-scale dependent variable (either temperature, precipitation, or surface runoff) measured at individual gauging stations to six large-scale independent variables (temperature, precipitation, surface runoff, height to the 500-mbar pressure surface, and the zonal and meridional gradient across this surface). ...The area investigated is the western United States. ... The calibration data set is from 1948 through 1988 and includes data from 268 joint temperature and precipitation stations, 152 streamflow stations (which are converted to runoff data), and 24 gridded 500-mbar pressure height nodes.
Resumo:
Several studies have shown that tropical heating variations at intraseasonal to interannual time scales may be associated with global climate anomalies. During the past decade, relatively high frequency (daily to weekly) variations in tropical convective activity have also been found to produce significant midlatitude responses within days to weeks. In this study, we investigate the processes by which individual tropical cyclones affect midlatitude weather and climate.
Resumo:
H.J. Andrews Experimental Forest is a 6400 ha forest of Douglas fir, western hemlock, and Pacific silver fir located in, and typical of, the central portion of the western slope of the Cascade mountain range of Oregon. The forest is one of 19 sites in the Long-Term Ecological Research (LTER) program sponsored by the National Science Foundation. ... Because of the scientific significance of Andrews Forest, it is important to investigate the temporal variability of annual and seasonal temperature and precipitation values at the site and identify past times of anomalous climatic conditions. It is also important to establish quantitatively the relationships between the climate of Andrews Forest and that of its surrounding area and, hence, place the climate of Andrews Forest into its regional context.
Resumo:
Seasonal snow cover in the mountains of the Upper Colorado River Basin is a major source of water for a large portion of the southwestern United States. The extent and amount of this snowpack not only reflects changes in weather patterns and climate but also influences the general circulation through modification of the energy exchange between land and atmosphere. ... Satellite observations and remote sensing techniques can enhance the standard snowpack observations to provide the temporal and spatial measurements required for understanding the role of snow in the surface energy balance and improving the management of water resources.
Resumo:
This paper summarizes progress in an ongoing study of California's temperature trends. It supplements studies reported at PACLIM in 1984, 1986, and 1987. ... Objectives of this study are twofold: to examine and map the trends in maximum and minimum temperatures for the warm and cool seasons separately, and to examine regional differences in maximum and minimum temperature trends in California.
Resumo:
Sediments in Santa Barbara Basin contain microfossil and sedimentological information that allows reconstruction of major features of the California Current such as water temperature, strength of upwelling, and productivity. ... Until now, investigations of Santa Barbara Basin sediments have utilized analytical techniques that could not resolve seasonal laminae, permitting annual resolution of variations in sediment composition and structure only. ... Based on a successful technique for preparation of epoxy-embedded and highly polished thin-sections that permit economical optical and electron microscope evaluation of laminated sequences, it is our long-term goal to reconstruct, with unprecedented detail, the history of sedimentation processes in the Santa Barbara Basin by developing ultra-high-resolution time series of biotic and detrital proxies.
Resumo:
In studying hydrosphere, atmosphere, and biosphere interactions, it is useful to focus on specific subsystem processes and energy exchanges (forcing). Since subsystem scales range over ten orders of magnitude, it may be difficult to focus research on scales that will yield useful results in terms of establishing causal and predictive connections between more easily and less easily observed subsystems. In an effort to find pertinent scales, we have begun empirical investigations into relationships between atmospheric, oceanic, and biological systems having spatial scales exceeding 10^3 kilometers and temporal scales of six months or more.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We estimate monthly runoff for a 2-dimensional solution domain containing those areas tributary to Pyramid Lake, Nevada (the Truckee River drainage basin) at a 1-kilometer grid cell spacing. ... To calculate the effect of snow on the hydrologic system, we perform two experiments. In the first we assume that all precipitation falls as rain; in the second we assume that some precipitation falls as snow, thus available water is a combination of rain and snowmelt. We find that considering the effect of snow results in a more accurate representation of mean monthly flow rates, in particular the peak flow during the melt season in the Sierra Nevada. These preliminary results indicate that a relatively simple snow model can improve the representation of Truckee River basin hydrology, significantly reducing errors in modeled seasonal runoff.
Resumo:
We describe a 2.5-degree gridpoint atmospheric hydrology/climatology of precipitable water, precipitation, atmospheric moisture convergence, and a residual evaporation or evapotranspiration for the coterminous United States. We also describe a large-scale surface hydrology/climatology of a residual soil moisture, streamflow divergence, or runoff, as well as precipitation and evaporation. Annual and seasonal means and interrelationships among various components of the hydrologic cycles are discussed.
Resumo:
For the 6-year period 1987 through 1992, most of California suffered the worst or near-worst drought in a recorded history of about 140 years. Based on tree ring reconstructions, it may have been the worst in more than 400 years. The purpose of this paper is to review briefly the recent drought, then talk about the water supply situation this year, with some discussion of why the California drought is over hydrologically for most people; but for some, water supply problems continue.
Resumo:
Numerous integrated time series have been assembled that suggest global temperature has been increasing steadily over the last century. ... However, superimposed on the long-term warming trends of these series are decadal-scale fluctuations, periods of slightly increasing and even decreasing temperature followed by rapid increases in temperature. ... In this pilot study, data for 1931-1990 from eight [western North America] coastal stations are examined to test the utility of a state-space statistical model (developed by Dr. Roy Mendelssohn, PFEG) in separating and describing seasonal patterns and long-term trends.