272 resultados para Eastern Canada
Resumo:
The fish habitats along an inshore water stretch along the eastern/central coast of Lake Tanganyika are discussed and a quantitative analysis of the species composition, distribution and abundance of the littoral fishes within the area of study is presented. Seventy-one species of fish belonging to 48 genera and to 15 fish families were collected and identified during the study. The majority of species belonged to the Cichlidae family. Intensive beach seining for clupeids is suggested as one of the causes of low fish biomass in the area surveyed. The areas south of Kigoma appeared to contain more fish, with average catch rates of 11.7 kg/haul than those north of Kigoma where average catch rates of 7.6 kg/haul were recorded. Some suggestions for improved management of these resources are given.
Resumo:
The gut contents of Sardina pilchardus specimens captured in Izmir Bay were examined in order to determine their feeding regimes. Of the 365 stomachs examined, 321 (87.95%) contained food and 44 (12.05%) were empty. Analysis of gut contents verified that S. pilchardus feeds on zooplankton. The most important group in the diet of S. pilchardus was copepods (79.79%). Decapod crustacean larvae (8.17%) and bivalves (3.18%) were second and third, respectively, in order of importance. The application of analysis of variance to monthly data of numerical percentage, weight percentage, frequency of occurrence and index of relative importance indicated that there was no significant difference between months. Oncaea media was the most dominant species for six months of the year. Euterpina acutifrons, Centropages typicus, Calanoida, Oncaea sp. and Corycaeus sp. were the most dominant for March, April, May, September, October and December.
Resumo:
The 19th century commercial ship-based fishery for gray whales, Eschrichtius robustus, in the eastern North Pacific began in 1846 and continued until the mid 1870’s in southern areas and the 1880’s in the north. Henderson identified three periods in the southern part of the fishery: Initial, 1846–1854; Bonanza, 1855–1865; and Declining, 1866–1874. The largest catches were made by “lagoon whaling” in or immediately outside the whale population’s main wintering areas in Mexico—Magdalena Bay, Scammon’s Lagoon, and San Ignacio Lagoon. Large catches were also made by “coastal” or “alongshore” whaling where the whalers attacked animals as they migrated along the coast. Gray whales were also hunted to a limited extent on their feeding grounds in the Bering and Chukchi Seas in summer. Using all available sources, we identified 657 visits by whaling vessels to the Mexican whaling grounds during the gray whale breeding and calving seasons between 1846 and 1874. We then estimated the total number of such visits in which the whalers engaged in gray whaling. We also read logbooks from a sample of known visits to estimate catch per visit and the rate at which struck animals were lost. This resulted in an overall estimate of 5,269 gray whales (SE = 223.4) landed by the ship-based fleet (including both American and foreign vessels) in the Mexican whaling grounds from 1846 to 1874. Our “best” estimate of the number of gray whales removed from the eastern North Pacific (i.e. catch plus hunting loss) lies somewhere between 6,124 and 8,021, depending on assumptions about survival of struck-but-lost whales. Our estimates can be compared to those by Henderson (1984), who estimated that 5,542–5,507 gray whales were secured and processed by ship-based whalers between 1846 and 1874; Scammon (1874), who believed the total kill over the same period (of eastern gray whales by all whalers in all areas) did not exceed 10,800; and Best (1987), who estimated the total landed catch of gray whales (eastern and western) by American ship-based whalers at 2,665 or 3,013 (method-dependent) from 1850 to 1879. Our new estimates are not high enough to resolve apparent inconsistencies between the catch history and estimates of historical abundance based on genetic variability. We suggest several lines of further research that may help resolve these inconsistencies.
Resumo:
In recent decades, hatchery-growout culture of oysters, Crassostrea virginica, and northern quahogs, Mercenaria mercenaria, has been commercially successful in Atlantic United States and oysters in Atlantic Canada. Culturists have not had success, as yet, with northern bay scallops, Argopecten irradians irradians. Large mortalities occur during the culture process, mainly because the scallops are relatively delicate and some die when handled. In addition, too little edible meat, i.e. the adductor muscle, is produced for the culture operation to be profitable. However, three companies, one in Massachusetts, one in New Brunswick, and one on Prince Edward Island, Canada, have discovered that they can produce bay scallops successfully by harvesting them when partially-to fully-grown and selling them whole. In restaurants, the scallops are cooked and served with all their meats (adductor muscles and rims) and also with the shells, which have been genetically-bred for bright colors. The scallop seed are produced in hatcheries and then grown in lantern or pearl nets and cages to market size. Thus far, production has been relatively small, just beyond the pilot-scale, until a larger demand develops for this product.
Resumo:
This is a broad historical overview of the bay scallop, Argopecten irradians, fishery on the East and Gulf Coasts of North America (Fig. 1). For a little over a century, from about the mid 1870’s to the mid 1980’s, bay scallops supported large commercial fisheries mainly in the U.S. states of Massachusetts, New York, and North Carolina and on smaller scales in the states in between and in western Florida. In these states, the annual harvests and dollar value of bay scallops were far smaller than those of the other important commercial mollusks, the eastern oysters, Crassostrea virginica, and northern quahogs, Mercenaria mercenaria, but they were higher than those of softshell clams, Mya arenaria (Table 1). The fishery had considerable economic importance in the states’ coastal towns, because bay scallops are a high-value product and the fishery was active during the winter months when the economies in most towns were otherwise slow. The scallops also had cultural importance as a special food, an ornament owing to its pretty shell design, and an interesting biological component of
Resumo:
Rangia and marsh clams, Rangia cuneata, R. flexuosa, and Polymesoda caroliniana, occur in brackish waters along México’s eastern coast from the northern State of Tamaulipas to the southern State of Campeche. The clams were important to the prehispanic people in the southern part of the State of Veracruz, where they were used as food and as construction material. In modern times, they are harvested for food. The fishermen wade in shallow water and harvest the clams in soft sediments by hand. Annual landings of whole clams during a recent 5-yr period, 1998–2002, were 1,139–1,695 t. The only area with a substantial ongoing clam fishery is in the Lower Papaloapan River Basin, including Alvarado Lagoon, where as many as 450 fishermen are licensed harvesters. This fishery for the Rangia and marsh clams is the most important clam fishery along México’s Gulf Coast.
Resumo:
ABSTRACT—Bycatch mortality of Pacific halibut, Hippoglossus stenolepis, in nontarget fisheries is composed primarily of immature fish, and substantial reductions in yield to directed halibut fisheries result from this bycatch. Distant-water bottomtrawl fleets operating off the North American coast, beginning in the mid 1960’s, experienced bycatch mortality of over 12,000 t annually. Substantial progress on reducing this bycatch was not achieved until the of extension fisheries jurisdictions by the United States and Canada in 1977. Bycatch began to increase again during the expansion of domestic catching capacity for groundfish, and by the early 1990’s it had returned to levels seen during the period of foreign fishing. Collaborative action by Canada and the United States through the International Pacific Halibut Commission has resulted in substantial reductions in bycatch mortality in some areas. Methods of control have operated at global, fleet, and individual vessel levels. We evaluate the hierarchy of effectiveness for these control measures and identify regulatory needs for optimum effects. New monitoring technologies offer the promise of more cost-effective approaches to bycatch reduction.
Resumo:
Twenty-nine verified records of white sharks, Carcharodon carcharias, from British Columbia and Alaska waters (1961–2004) are presented. Record locations ranged from lat. 48°48ʹN to lat. 60°17ʹN, including the northernmost occurrence of a white shark and the first report of this species from the central Bering Sea. White sharks recorded from the study area were generally large, with 95% falling between 3.8 and 5.4 m in length. Mature white sharks of both sexes occur in British Columbia and Alaska waters, although they do not necessarily reproduce there. White sharks actively feed in the study area; their diet is similar to that reported for this species from Washington and northern California waters. Sea surface temperature (SST) concurrent with white shark records from the study area ranged from 16°C to between 6.4°C and 5.0°C, extending the lower extreme of the range of SST from which this species has been previously reported. White shark strandings are rarely reported, yet 16 (55%) of the records in this study are of beached animals; strandings generally occurred later in the year and at lower latitudes than nonstrandings. No significant correlation was found between white shark records in the study area and El Niño events and no records occurred during La Niña events. The data presented here indicate that white sharks are more abundant in the cold waters of British Columbia and Alaska than previous records suggest.
Resumo:
California, in response to health concerns, initiated a program on 1 March 1991 which required anyone selling eastern oysters, Crassostrea virginica, from the Gulf of Mexico area to notify potential consumers that there was a risk in consuming them raw. This mandatory warning, followed shortly thereafter by a similar warning in other states, including Louisiana and Florida, received extensive press cover-age throughout the country and particularly in the Gulf area. This paper examines the extent to which the demand for Gulf-area oysters has been reduced as a result of mandatory warning labels and negative publicity. In general, the results suggest that since 1991 the “summer” dockside price has been reduced by about 50% as a result of warning labels and associated negative publicity, while the “winter” dockside price has been reduced by about 30%.
Resumo:
Alaska plaice, Pleuronectes quadrituberculatus, is one of the major flatfishes in the eastern Bering Sea ecosystem and is most highly concentrated in the shallow continental shelf of the eastern Bering Sea. Annual commercial catches have ranged from less than 1,000 metric tons (t) in 1963 to 62,000 t in 1988. Alaska plaice is a relatively large flatfish averaging about 32 cm in length and 390 g in weight in commercial catches. They are distributed from nearshore waters to a depth of about 100 m in the eastern Bering Sea during summer, but move to deeper continental shelf waters in winter to escape sea ice and cold water temperatures. Being a long-lived species (>30 years), they have a relatively low natural mortality rate estimated at 0.20. Maturing at about age 7, Alaska plaice spawn from April through June on hard sandy substrates of the shelf region, primarily around the 100 m isobath. Prey items primarily include polychaetes and other marine worms. In comparison with other flatfish, Alaska plaice and rock sole, Pleuronectes bilineatus, have similar diets but different habitat preferences with separate areas of peak population density which may minimize interspecific competition. Yellowfin sole, Pleuronectes asper, while sharing similar habitat, differs from these two species because of the variety of prey items in its diet. Competition for food resources among the three species appears to be low. The resource has experienced light exploitation since 1963 and is currently in good condition. Based on the results of demersal trawl surveys and age-structured analyses, the exploitable biomass increased from 1971 through the mid-1980’s before decreasing to the 1997 level of 500,000 t. The recommended 1998 harvest level, Allowable Biological Catch, was calculated from the Baranov catch equation based on the FMSY harvest level and the projected 1997 biomass, resulting in a commercial harvest of 69,000 t, or about 16% of the estimated exploitable biomass.
Resumo:
Bycatch management measures instituted for groundfish fisheries of the eastern Bering Sea have focused on reducing the incidental capture and injury of species traditionally harvested by other fisheries. These species include king crab, Paralithodes and Lithodes spp.; Tanner crab, Chionoecetes spp.; Pacific herring, Clupea harengus pallasi; Pacific halibut, Hippoglossus stenolepis; and Pacific salmon and steelhead trout, Oncorhynchus spp. Collectively, these species are called "prohibited species," as they cannot be retained as bycatch in groundfish fisheries and must be discarded with a minimum of injury.
Resumo:
During 1995 and 1996, the National Marine Fisheries Service (NMFS), conducted pilot studies to develop survey methodology and a sampling strategy for assessment of coastal shark populations in the Gulf of Mexico and western North Atlantic. Longline gear similar to that used in the commercial shark fishery was deployed at randomly selected stations within three depth strata per 60 nautical mile gridf rom Brownsville, Tex. to Cape Ann, Mass. The survey methodology and gear design used in these surveys proved effective for capturing many of the small and large coastal sharks regulated under the auspices of the 1993 Fisheries Management Plan (FMP) for Sharks oft he Atlantic Ocean. Shark catch rates, species composition, and relative abundance documented in these pilot surveys were similar to those reported from observer programs monitoring commercial activities. During 78 survey days, 269 bottom longline sets were completed with 879 sharks captured.
Resumo:
On an early fall day in September 1962 I sat quietly, thoughtfully, at my large desk in a newly renovated corner office in the old Crane wing of the Lillie Building, Marine Biological Laboratory (MBL), Woods Hole, Massachusetts. Looking out through high, ancient windows, I could see the busy main street of Woods Hole in the foreground, Martha's Vineyard beyond, behind me the MBL Stone Candle House, across the street the Woods Hole Oceanographic Institution (WHOI) and to the far right, the Biological Laboratory of the Bureau of Commercial Fisheries (BCF)(Fig. 1). Down the inner hall from my office stretched renovated quarters for the fledgling, ongoing, year-round MBL Systematics-Ecology Program (SEP), which I had been invited to direct.
Resumo:
Assessment of walleye pollock, Theragra chalcogramma, in the eastern Bering Sea is complicated because the species is semi-pelagic in habit. Annual bottom trawl surveys provide estimates of demersal abundance on the eastern Bering Sea shelf. Every third year (starting in 1979), an extended area of the shelf and slope is surveyed and an echo integration-midwater trawl survey provides estimates of pollock abundance in midwater. Overall age-specific population and biomass estimates are obtained by summing the demersal and midwater results, assuming that the bottom trawl samples only pollock inhabiting the lower 3 m of the water column. Total population estimates have ranged from 134 x 109 fish in 1979 to 27 x 109 fish in 1988. The very high abundance observed in 1979 reflects the appearance of the unusually large 1978 year class. Changes in age-specific abundance estimates have documented the passage of strong (1978, 1982, and 1984) and weak year classes through the fishery. In general, older fish are more demersally oriented and younger fish are more abundant in midwater, but this trend was not always evident in the patterns of abundance of 1- and 2-year-old fish. As the average age of the population has increased, so has the relative proportion of pollock estimated by the demersal surveys. Consequently, it is unlikely that either technique can be used independently to monitor changes in abundance and age composition. Midwater assessment depends on pelagic trawl samples for size and age composition estimates, so both surveys are subject to biases resulting from gear performance and interactions between fish and gear. In this review, we discuss survey methodology and evaluate assumptions regarding catchability and availability as they relate to demersal, midwater, and overall assessment.
Resumo:
Yellowfin sole, Pleuronectes asper, is the second most abundant flatfish in the North Pacific Ocean and is most highly concentrated in the eastern Bering Sea. It has been a target species in the eastern Bering Sea since the mid-1950's, initially by foreign distant-water fisheries but more recently by U.S. fisheries. Annual commercial catches since 1959 have ranged from 42,000 to 554,000 metric tons (t). Yellowfin sole is a relatively small flatfish averaging about 26 cm in length and 200 g in weight in commercial catches. It is distributed from nearshore waters to depths of about 100 m in the eastern Bering Sea in summer, but moves to deeper water in winter to escape sea ice. Yellowfin sole is a benthopelagic feeder. It is a longlived species (>20 years) with a correspondingly low natural mortality rate estimated at 0.12. After being overexploited during the early years of the fishery and suffering a substantial decline in stock abundance, the resource has recovered and is currently in excellent condition. The biomass during the 1980's may have been as high as, if not higher than, that at the beginning of the fishery. Based on results of demersal trawl surveys and two age structured models, the current exploitable biomass has been estimated to range between 1.9 and 2.6 million t. Appropriate harvest strategies were investigated under a range of possible recruitment levels. The recommended harvest level was calculated by multiplying the yield derived from the FOI harvest level (161 g at F = 0.14) hy an average recruitment value resulting in a commercial harvest of 276,900 t, or about 14% of the estimated exploitable biomass.