341 resultados para Delegates Bylaws report
Resumo:
Summary: The offshore shelf and canyon habitats of the OCNMS (Fig. 1) are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary. To begin addressing this issue, an initial pilot survey was conducted June 1-12, 2004 at six sites in offshore waters of the OCNMS (Fig. 2, average depths of 147-265 m) to explore for the presence of deep-sea coral/sponge assemblages and to look for evidence of potential anthropogenic impacts in these critical habitats. The survey was conducted on the NOAA Ship McARTHUR-II using the Navy’s Phantom DHD2+2 remotely operated vehicle (ROV), which was equipped with a video camera, lasers, and a manipulator arm for the collection of voucher specimens. At each site, a 0.1-m2 grab sampler also was used to collect samples of sediments for the analysis of macroinfauna (> 1.0 mm), total organic carbon (TOC), grain size, and chemical contaminants. Vertical profiles of salinity, dissolved oxygen (DO), temperature, and pressure were recorded at each site with a small SeaCat conductivity-temperature-depth (CTD) profiler. Niskin bottles attached to the CTD also obtained near-bottom water samples in support of a companion study of microbial indicators of coral health and general ecological condition across these sites. All samples except the sediment-contaminant samples are being analyzed with present project funds. Original cruise plans included a total of 12 candidate stations to investigate (Fig. 3). However, inclement weather and equipment failures restricted the sampling to half of these sites. In spite of the limited sampling, the work completed was sufficient to address key project objectives and included several significant scientific observations. Foremost, the cruise was successful in demonstrating the presence of target deepwater coral species in these waters. Patches of the rare stony coral Lophelia pertusa, more characteristic of deepwater coral/sponge assemblages in the North Atlantic, were observed for the first time in OCNMS at a site in 271 meters of water. A large proportion of these corals consisted of dead and broken skeletal remains, and a broken gorgonian (soft coral) also was observed nearby. The source of these disturbances is not known. However, observations from several sites included evidence of bottom trawl marks in the sediment and derelict fishing gear (long lines). Preliminary results also support the view that these areas are important reservoirs of marine biodiversity and of value as habitat for demersal fishes. For example, onboard examination of 18 bottom-sediment grabs revealed benthic infaunal species representative of 14 different invertebrate phyla. Twenty-eight species of fishes from 11 families, including 11 (possibly 12) species of ommercially important rockfishes, also were identified from ROV video footage. These initial discoveries have sparked considerable interests in follow-up studies to learn more about the spatial extent of these assemblages and magnitude of potential impacts from commercial-fishing and other anthropogenic activities in the area. It is essential to expand our knowledge of these deep-sea communities and their vulnerability to potential environmental risks in order to determine the most appropriate management strategies. The survey was conducted under a partnership between NOAA’s National Centers for Coastal Ocean Science (NCCOS) and National Marine Sanctuary Program (NMSP) and included scientists from NCCOS, OCNMS, and several other west-coast State, academic, private, and tribal research institutions (see Section 4 for a complete listing of participating scientists). (PDF contains 20 pages)
Resumo:
The Pennekamp Coral Reef State Park was established in 1960 and the Key Largo National Marine Sanctuary in 1975. Field studies, funded by NOAA, were conducted in 1980 - 1981 to determine the state of the coral reefs and surrounding areas in relation to changing environmental conditions and resource management that had occurred over the intervening years. Ten reef sites within the Sanctuary and seven shallow grass and hardbottom sites within the Park were chosen for qualitative and quantitative studies. At each site, three parallel transects not less than 400 m long were run perpendicular to the reef or shore, each 300 m apart. Observations, data collecting and sampling were done by two teams of divers. Approximately 75 percent of the bottom within the 18-m isobath was covered by marine grasses, predominantly turtle grass. The general health of the seagrasses appeared good but a few areas showed signs of stress. The inner hardbottom of the Park was studied at the two entrances to Largo Sound. Though at the time of the study the North Channel hardbottom was subjected to only moderate boat traffic, marked changes had taken place over the past years, the most obvious of which was the loss of the extensive beds of Sargassum weed, one of the most extensive beds of this alga in the Keys. Only at this site was the green alga Enteromorpha encountered. This alga, often considered a pollution indicator, may denote the effects of shore run off. The hardbottom at South Channel and the surrounding grass beds showed signs of stress. This area bears the heaviest boat traffic within the Park waters causing continuous turbidity from boat wakes with resulting siltation. The offshore hardbottom and rubble areas in the Sanctuary appeared to be in good health and showed no visible indications of deterioration. Damage by boat groundings and anchors was negligible in the areas surveyed. The outer reefs in general appear to be healthy. Corals have a surprising resiliency to detrimental factors and, when conditions again become favorable, recover quickly from even severe damage. It is, therefore, a cause for concern that Grecian Rocks, which sits somewhat inshore of the outer reef line, has yet to recover from die-off in 1978. The slow recovery, if occurring, may be due to the lower quality of the inshore waters. The patch reefs, more adapted to inshore waters, do not show obvious stress signs, at least those surveyed in this study. It is apparent that water quality was changing in the keys. Water clarity over much of the reef tract was observed to be much reduced from former years and undoubtedly plays an important part in the stresses seen today over the Sanctuary and Park. (PDF contains 119 pages)
Resumo:
(PDF contains 2 pages.)
Resumo:
(PDF contains 3 pages.)
Resumo:
(PDF contains 3 pages.)
Resumo:
(PDF contains 5 pages.)
Resumo:
(PDF contains 5 pages.)
Resumo:
(PDF contains 4 pages.)
Resumo:
(PDF contains 82 pages.)
Resumo:
This report was prepared for and funded by the Florida State Department of Environmental Protection with the encouragement of members from the Florida Ocean Alliance, Florida Oceans and Coastal Resources Council and other groups with deep interests in the future of Florida’s coast. It is a preliminary study of Florida’s Ocean and Coastal Economies based only on information currently found within the datasets of the National Ocean Economics Program. (NOEP). It reflects only a portion of the value of Florida’s coastal related economy and should not be considered comprehensive. A more customized study based on the unique coastal and ocean-dependent economic activities of the State of Florida should be carried out to complete the picture of Florida’s dependence upon its coasts. (PDF has 129 pages.)
Resumo:
The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a “spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment.” (PDF contains 31 pages)
Resumo:
Few issues confronting coastal resource managers are as divisive or difficult to manage as regulating the construction of private recreational docks and piers associated with residential development. State resource managers face a growing population intent on living on or near the coast, coupled with an increasing desire to have immediate access to the water by private docks or piers. (PDF contains 69 pages)
Resumo:
The California Fish and Game Commission (Commission) has the authority to require one or any combination of Bycatch Reduction Device (BRD) types in the trawl fishery within California waters for Pacific ocean shrimp (Pandalus jordani), most commonly referred to as pink shrimp. The purpose of this report is to provide the Commission with the best available information about the BRDs used in the pink shrimp trawl fishery. The mandatory requirement for BRDs occurred in California in 2002, and in Oregon and Washington in 2003, resulting from an effort to minimize bycatch of overfished and quota managed groundfish species. Three types of BRDs currently satisfy the requirement for this device in the California fishery: 1) the Nordmøre grate (rigid-grate excluder); 2) soft-panel excluder; and 3) fisheye excluder; however, the design, specifications, and efficacy differ by BRD type. Although no data has been collected on BRDs directly from the California pink shrimp fishery, extensive research on the efficacy and differences among BRD types has been conducted by the Oregon Department of Fish and Wildlife (ODFW) since the mid-1990s. Rigid-grate excluders are widely considered to be the most effective of the three BRD types at reducing groundfish bycatch. Over 90 percent of the Oregon pink shrimp fleet use rigid-grate excluders. The majority of the current California pink shrimp fleet also uses rigid-grate excluders, according to a telephone survey conducted by the California Department of Fish and Game (Department) in 2007-2008 of pink shrimp fishermen who have been active in the California fishery in recent years. Hinged rigid-grate excluders have been developed in recent years to reduce the bending of the BRD on vessels that employ net reels to stow and deploy their trawl nets, and they have been used successfully on both single- and double-rig vessels in Oregon. Soft-panel excluders have been demonstrated to be effective at reducing groundfish bycatch, although excessive shrimp loss and other problems have also been associated with this design. Fisheye excluders have been used in the California fishery in the past, but they were disapproved in Oregon and Washington in 2003 because they were found to be less effective at reducing groundfish bycatch than other designs. The reputation of the United States west coast pink shrimp fishery as one of the cleanest shrimp fisheries in the world is largely attributed to the effectiveness of BRDs at reducing groundfish bycatch. Nevertheless, BRD research and development is still a relatively new field and additional modifications and methods may further reduce bycatch rates in the pink shrimp fishery.(PDF contains 12 pages.)
Resumo:
(PDF contains 1 page.)
Resumo:
(PDF contains 1 page.)