216 resultados para Bald Mountain Recreational Area (Pontiac, Mich.)
Resumo:
The priority management goal of the National Marine Sanctuaries Program (NMSP) is to protect marine ecosystems and biodiversity. This goal requires an understanding of broad-scale ecological relationships and linkages between marine resources and physical oceanography to support an ecosystem management approach. The Channel Islands National Marine Sanctuary (CINMS) is currently reviewing its management plan and investigating boundary expansion. A management plan study area (henceforth, Study Area) was described that extends from the current boundary north to the mainland, and extends north to Point Sal and south to Point Dume. Six additional boundary concepts were developed that vary in area and include the majority of the Study Area. The NMSP and CINMS partnered with NOAA’s National Centers for Coastal Ocean Science Biogeography Team to conduct a biogeographic assessment to characterize marine resources and oceanographic patterns within and adjacent to the sanctuary. This assessment includes a suite of quantitative spatial and statistical analyses that characterize biological and oceanographic patterns in the marine region from Point Sal to the U.S.-Mexico border. These data were analyzed using an index which evaluates an ecological “cost-benefit” within the proposed boundary concepts and the Study Area. The sanctuary resides in a dynamic setting where two oceanographic regimes meet. Cold northern waters mix with warm southern waters around the Channel Islands creating an area of transition that strongly influences the regions oceanography. In turn, these processes drive the biological distributions within the region. This assessment analyzes bathymetry, benthic substrate, bathymetric life-zones, sea surface temperature, primary production, currents, submerged aquatic vegetation, and kelp in the context of broad-scale patterns and relative to the proposed boundary concepts and the Study Area. Boundary cost-benefit results for these parameters were variable due to their dynamic nature; however, when analyzed in composite the Study Area and Boundary Concept 2 were considered the most favorable. Biological data were collected from numerous resource agencies and university scientists for this assessment. Fish and invertebrate trawl data were used to characterize community structure. Habitat suitability models were developed for 15 species of macroinvertebrates and 11 species of fish that have significant ecological, commercial, or recreational importance in the region and general patterns of ichthyoplankton distribution are described. Six surveys of ship and plane at-sea surveys were used to model marine bird diversity from Point Arena to the U.S.-Mexico border. Additional surveys were utilized to estimate density and colony counts for nine bird species. Critical habitat for western snowy plover and the location of California least tern breeding pairs were also analyzed. At-sea surveys were also used to describe the distribution of 14 species of cetaceans and five species of pinnipeds. Boundary concept cost-benefit indices revealed that Boundary Concept 2 and the Study Area were most favorable for the majority of the species-specific analyses. Boundary Concept 3 was most favorable for bird diversity across the region. Inadequate spatial resolution for fish and invertebrate community data and incompatible sampling effort information for bird and mammal data precluded boundary cost-benefit analysis.
Resumo:
The summer flounder, Paralichthys dentatus, is overexploited and is currently at very low levels of abundance. This is reflected in the compressed age structure of the population and the low catches in both commercial and recreational fisheries. Declining habitat quantity and quality may be contributing to these declines, however we lack a thorough understanding of the role of habitats in the population dynamics of this species. Stock structure is unresolved and current interpretations, depending on the technique and study area, suggest that there may be two or three spawning populations. If so, these stocks may have differing habitat requirements. In response to this lack of knowledge, this document summarizes and synthesizes the available information on summer flounder habitat in all life history stages (eggs, larvae, juveniles and adults) and identifies areas where further research is needed. Several levels of investigation were conducted in order to produce this document. First, an extensive search for summer flounder habitat information was made, which included both the primary and gray literature as well as unanalyzed data. Second, state and federal fisheries biologists and resource managers in all states within the primary range of summer flounder (Massachusetts to Florida) were interviewed along with a number of fish ecologists and summer flounder experts from the academic and private sectors. Finally, information from all sources was analyzed and synthesized to form a coherent overview. This document first presents an overview of the economic importance and current status of summer flounder (Chapter 1). It then summarizes our present state of knowledge of summer flounder distribution, life history patterns and stock identification (Chapter 2). This is followed by a synopsis of habitat requirements during each life history stage. For convenience, this is presented by general habitat as offshore eggs (Chapter 3), offshore larvae (Chapter 4), estuarine larvae (Chapter 5), estuarine juveniles (Chapter 6), offshore juveniles (Chapter 7) and estuarine and offshore adults (Chapter 8). In several instances, previously undigested data sets are analyzed to provide more detailed information, especially for estuarine juveniles. The information is then discussed in terms of its relevance to resource managers (Chapter 9).
Resumo:
The Tortugas Integrated Biogeographic Assessment presents a unique analysis of demographic changes in living resource populations, as well as societal and socioeconomic benefits that resulted from the Tortugas Ecological Reserves during the first five years after their implementation. In 2001, state and federal agencies established two no-take reserves within the region as part of the Florida Keys National Marine Sanctuary. The northern reserve (Tortugas Ecological Reserve North) was established adjacent to the Dry Tortugas National Park, which was first declared a national monument in 1935. The reserves were designed to protect a healthy coral reef ecosystem that supports diverse faunal assemblages and fisheries, serves as important spawning grounds for groupers and snappers, and includes essential feeding and breeding habitats for seabirds. The unique ecological qualities of the Tortugas region were recognized as far back as 1850, and it remains an important ecosystem and research area today. The two main goals of the Tortugas Ecological Reserve Integrated Ecological Assessment were: 1) to determine if demographic changes such as increases in abundance, average size and spawning potential of exploited populations occurred in the Tortugas region after reserve implementation; and 2) whether short-term economic losses occurred to fishers displaced by the reserve. This project utilized a biogeographic approach in which information on the physical features (i.e., habitat) and oceanographic patterns were first used to determine the spatial distribution of selected fish populations within and outside the Tortugas Ecological Reserve. Before-and-after reserve implementation comparisons of selected fish populations were then conducted to determine if demographic changes occurred in reef fish assemblages. These comparisons were done for the Tortugas region and also for a subset of available habitats within the Tortugas Ecological Reserve Study Area. Social and economic impacts of the reserves were determined through: 1) analyses of commercial landings and revenues from fishers, operating in the Tortugas region before and after reserve implementation and 2) surveys of recreational tour guides. Analyses of the commercial landings and revenues excluded areas inside Dry Tortugas National Park because commercial fishing has been prohibited within park boundaries since 1992. Key findings and outcomes of this integrated ecological assessment are organized by chapter and listed below.
Resumo:
Since 1999, NOAA’s Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) has been working with federal and territorial partners to characterize monitor and assess the status of the marine environment in southwestern Puerto Rico. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort of the La Parguera region in southwestern Puerto Rico was conducted through partnerships with the University of Puerto Rico (UPR) and the Puerto Rico Department of Natural and Environmental Resources (DNER). Project funding was primarily provided by NOAA CRCP and CCMA. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem in the La Parguera region have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a suite of hurricanes, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem several activities are underway or have been implemented to manage the marine resources. These efforts have been supported by the CREM project by identifying marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first seven years of fish survey data (2001-2007) and associated characterization of the benthos. The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure across the seascape including fringing mangroves, inner, middle, and outer reef areas, and open ocean shelf bank areas.
Resumo:
This poster presents information on the status and trends of coral reef ecosystems in St. Croix, US Virgin Islands (USVI). Data were collected by NOAA’s Center for Coastal Monitoring and Assessment Biogeography Branch (CCMA-BB) from 2001-2006 at 1,275 random locations in and around Buck Island Reef National Monument (BIRNM). The main objective was to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure; to provide spatially explicit information on the distribution of key species or groups of species; and to compare community structure inside versus outside of BIRNM.
Resumo:
Land-based pollution is commonly identified as a major contributor to the observed deterioration of shallow-water coral reef ecosystem health. Human activity on the coastal landscape often induces nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination and other stressors that have degraded the quality of coastal waters. Coral reef ecosystems throughout Puerto Rico, including Jobos Bay, are under threat from coastal land uses such as urban development, industry and agriculture. The objectives of this report were two-fold: 1. To identify potentially harmful land use activities to the benthic habitats of Jobos Bay, and 2. To describe a monitoring plan for Jobos Bay designed to assess the impacts of conservation practices implemented on the watershed. This characterization is a component of the partnership between the U.S. Department of Agriculture (USDA) and the National Oceanic and Atmospheric Administration (NOAA) established by the Conservation Effects Assessment Project (CEAP) in Jobos Bay. CEAP is a multi-agency effort to quantify the environmental benefits of conservation practices used by private landowners participating in USDA programs. The Jobos Bay watershed, located in southeastern Puerto Rico, was selected as the first tropical CEAP Special Emphasis Watershed (SEW). Both USDA and NOAA use their respective expertise in terrestrial and marine environments to model and monitor Jobos Bay resources. This report documents NOAA activities conducted in the first year of the three-year CEAP effort in Jobos Bay. Chapter 1 provides a brief overview of the project and background information on Jobos Bay and its watershed. Chapter 2 implements NOAA’s Summit to Sea approach to summarize the existing resource conditions on the watershed and in the estuary. Summit to Sea uses a GIS-based procedure that links patterns of land use in coastal watersheds to sediment and pollutant loading predictions at the interface between terrestrial and marine environments. The outcome of Summit to Sea analysis is an inventory of coastal land use and predicted pollution threats, consisting of spatial data and descriptive statistics, which allows for better management of coral reef ecosystems. Chapters 3 and 4 describe the monitoring plan to assess the ecological response to conservation practices established by USDA on the watershed. Jobos Bay is the second largest estuary in Puerto Rico, but has more than three times the shoreline of any other estuarine area on the island. It is a natural harbor protected from offshore wind and waves by a series of mangrove islands and the Punta Pozuelo peninsula. The Jobos Bay marine ecosystem includes 48 km² of mangrove, seagrass, coral reef and other habitat types that span both intertidal and subtidal areas. Mapping of Jobos Bay revealed 10 different benthic habitats of varying prevalence, and a large area of unknown bottom type covering 38% of the entire bay. Of the known benthic habitats, submerged aquatic vegetation, primarily seagrass, is the most common bottom type, covering slightly less than 30% of the bay. Mangroves are the dominant shoreline feature, while coral reefs comprise only 4% of the total benthic habitat. However, coral reefs are some of the most productive habitats found in Jobos Bay, and provide important habitat and nursery grounds for fish and invertebrates of commercial and recreational value.
Resumo:
Gray’s Reef National Marine Sanctuary (GRNMS) is exploring the concept of a research area (RA) within its boundaries. The idea of a research area was first suggested in public scoping meetings held prior to the review of the Gray’s Reef Management Plan. An RA is a region specifically designed for conducting controlled scientific studies in the absence of confounding factors. As a result, a multidisciplinary group gathered by GRNMS was convened to consider the issue. This Research Area Working Group (RAWG) requested that a suite of analyses be conducted to evaluate the issue quantitatively. To meet this need, a novel selection procedure and geographic information system (GIS) was created to find the optimal location for an RA while balancing the needs of research and existing users. This report and its associated GIS files describe the results of the requested analyses and enable further quantitative investigation of this topic by the RAWG and GRNMS.
Resumo:
Annual mean fork length (FL) of the Pacific stock of chub mackerel (Scomber japonicus) was examined for the period of 1970–97. Fork length at age 0 (6 months old) was negatively correlated with year-class strength which fluctuated between 0.2 and 14 billion in number for age-0 fish. Total stock biomass was correlated with FL at age but was not a significant factor. Sea surface temperature (SST) between 38–40°N and 141–143°E during April–June was also negatively correlated with FL at age 0. A modified von Bertalanffy growth model that incorporated the effects of population density and SST on growth was well fitted to the observed FL at ages. The relative FL at age 0 for any given year class was maintained throughout the life span. The variability in size at age in the Pacific stock of chub mackerel is largely attributable to growth during the first six months after hatching.
Resumo:
The Pacific threadfin (Polydactylus sexfilis) is considered one of the premier Hawaiian food fishes but even with catch limits, seasonal closures, and size limits, catches have declined dramatically since the 1960s. It was identified as the top candidate species for stock enhancement in Hawaii, based on the decline in stocks, high market value, and importance of the fishery. In the stock enhancement program for Pacific threadfin, over 430,000 fingerlings of various sizes were implanted with coded wire tags and released in nursery habitats along the windward coast of Oahu between 1993 and 1998. Because few Pacific threadfin were present in creel surveys conducted between 1994 and 1998, Oahu fishermen were offered a $10 reward for each threadfin that was caught (for both hatchery-reared and wild fish). A total of 1882 Pacific threadfin were recovered from the reward program between March 1998 and May 1999, including 163 hatchery-reared fish, an overall contribution of 8.7% to the fishery. Hatchery-reared fish accounted for as high as 71% of returns in the release areas. Hatchery-reared fish were recovered on average 11.5 km (SD=9.8 km) from the release site, although some had moved as far away as 42 km. Average age for recovered hatchery-reared fish was 495 days; the oldest was 1021 days. Cultured Pacific threadfin juveniles survived and recruited successfully to the recreational fishery, accounting for 10% of fishermen’s catches on the windward side of Oahu. Recruitment to the fishery was highest for the 1997 release year; few juveniles from earlier releases were observed. Presence of a few large, fully developed females in the recreational fishery suggested that hatchery-reared fish can survive, grow, and reproductively contribute to the population. Implementation of an enhancement program that is focused on juveniles and perhaps large females, as part of an integrated fishery management strategy, could speed the recovery of this fish population.
Resumo:
Recreational fisheries in the waters off the northeast U.S. target a variety of pelagic and demersal fish species, and catch and effort data sampled from recreational fisheries are a critical component of the information used in resource evaluation and management. Standardized indices of stock abundance developed from recreational fishery catch rates are routinely used in stock assessments. The statistical properties of both simulated and empirical recreational fishery catch-rate data such as those collected by the National Marine Fisheries Service (NMFS) Marine Recreational Fishery Statistics Survey (MRFSS) are examined, and the potential effects of different assumptions about the error structure of the catch-rate frequency distributions in computing indices of stock abundance are evaluated. Recreational fishery catch distributions sampled by the MRFSS are highly contagious and overdispersed in relation to the normal distribution and are generally best characterized by the Poisson or negative binomial distributions. The modeling of both the simulated and empirical MRFSS catch rates indicates that one may draw erroneous conclusions about stock trends by assuming the wrong error distribution in procedures used to developed standardized indices of stock abundance. The results demonstrate the importance of considering not only the overall model fit and significance of classification effects, but also the possible effects of model misspecification, when determining the most appropriate model construction.
Resumo:
In recent years, increasing commercial landings of horseshoe crabs (Limulus polyphemus) along the Atlantic coast of the United States have raised concerns that the present resource is in decline and insufficient to support the needs of its user groups. These concerns have led the Atlantic States Marine Fisheries Commission (ASMFC) to implement a fishery management plan to regulate the harvest (ASMFC1). In order to properly manage any species, specific management goals and objectives must be established, and these goals depend on the resource users involved (Quinn and Deriso, 1999). Horseshoe crabs present a distinct resource management challenge because they are important to a diverse set of users (Berkson and Shuster, 1999).