207 resultados para U.S. Constitution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish traps are commonly used throughout the Caribbean to catch reef fish species and lobster and are the primary gear of choice for fishermen in the U.S. Virgin Islands. Once they are lost or abandoned they are referred to as derelict fish traps (DFTs)and a widespread concern exists that they contribute to ghostfishing. Ghostfishing occurs when derelict fishing gear continues to catch fish and induce mortality. Despite the public concerns that DFTs are an environmental threat, few studies have quantified the level of ghostfishing in the Caribbean. To address concerns from the fishing community and other marine stakeholders, this study provides the first experimental examination of ghostfishing impacts to fish and the potential economic impacts to fisheries in the U.S. Virgin Islands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of hypoxia, or low dissolved oxygen, is increasing in coastal waters worldwide and represents a significant threat to the health and economy of our Nation’s coasts and Great Lakes. This trend is exemplified most dramatically off the coast of Louisiana and Texas, where the second largest eutrophication-related hypoxic zone in the world is associated with the nutrient pollutant load discharged by the Mississippi and Atchafalaya Rivers. Aquatic organisms require adequate dissolved oxygen to survive. The term “dead zone” is often used in reference to the absence of life (other than bacteria) from habitats that are devoid of oxygen. The inability to escape low oxygen areas makes immobile species, such as oysters and mussels, particularly vulnerable to hypoxia. These organisms can become stressed and may die due to hypoxia, resulting in significant impacts on marine food webs and the economy. Mobile organisms can flee the affected area when dissolved oxygen becomes too low. Nevertheless, fish kills can result from hypoxia, especially when the concentration of dissolved oxygen drops rapidly. New research is clarifying when hypoxia will cause fish kills as opposed to triggering avoidance behavior by fish. Further, new studies are better illustrating how habitat loss associated with hypoxia avoidance can impose ecological and economic costs, such as reduced growth in commercially harvested species and loss of biodiversity, habitat, and biomass. Transient or “diel-cycling” hypoxia, where conditions cycle from supersaturation of oxygen late in the afternoon to hypoxia or anoxia near dawn, most often occurs in shallow, eutrophic systems (e.g., nursery ground habitats) and may have pervasive impacts on living resources because of both its location and frequency of occurrence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colonies of the scleractinian coral Acropora palmata, listed as threatened under the US Endangered Species Act in 2006, have been monitored in Hawksnest Bay, within Virgin Islands National Park, St. John, from 2004 through 2010 by scientists with the US Geological Survey, National Park Service, and the University of the Virgin Islands. The focus has been on documenting the prevalence of disease, including white band, white pox (also called patchy necrosis and white patches), and unidentified diseases (Rogers et al., 2008; Muller et al., 2008). In an effort to learn more about the pathologies that might be involved with the diseases that were observed, samples were collected from apparently healthy and diseased colonies in July 2009 for analysis. Two different microbial assays were performed on Epicentre Biotechnologies DNA swabs containing A. palmata coral mucus, and on water and sediment samples collected in Hawksnest Bay. Both assays are based on polymerase chain reaction (PCR) amplification of portions of the small rRNA gene (16S). The objectives were to determine 1) if known coral bacterial pathogens Serratia marcescens (Acroporid Serratiosis), Vibrio coralliilyticus (temperature-dependent bleaching, White Syndrome), Vibrio shiloi (bleaching, necrosis), and Aurantimonas coralicida (White Plague Type II) were present in any samples, and 2) if there were any differences in microbial community profiles of each healthy, unaffected or diseased coral mucus swab. In addition to coral mucus, water and sediment samples were included to show ambient microbial populations. In the first test, PCR was used to separately amplify the unique and diagnostic region of the 16S rRNA gene for each of the coral pathogens being screened. Each pathogen test was designed so that an amplified DNA fragment could be seen only if the specific pathogen was present in a sample. A positive result was indicated by bands of DNA of the appropriate size on an agarose gel, which separates DNA fragments based on the size of the molecule. DNA from pure cultures of each of the pathogens was used as a positive control for each assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 2001, biannual fish and habitat monitoring has been conducted for the shallow (> 30 m), colonized pavement and gorgonian dominated Buck Island Reef National Monument (BIRNM) St. Croix, USVI and adjacent waters. during October, 2005, widespread coral bleaching was observed within the ∼50 square-kilometer study area that was preceded by 10 wks of higher than average water temperatures (28.9–30.1 °C). Random transects (100 square meters) were conducted on linear reefs, patch reefs, bedrock, pavement, and scattered coral/rock habitats during October 2005, and April and October 2006, and species specific bleaching patterns were documented. During October 2005 approximately 51% of live coral cover was bleached. Nineteen of 23 coral species within 16 genera and two hydrocoral species exhibited signs of bleaching. Coral cover for Montastraea annularis and species of the genus Agaricia were the most affected, while other species exhibited variability in their susceptibility to bleaching. Bleaching was evident at all depths (1.5–28 m), was negatively correlated with depth, and positively correlated with habitat complexity. Bleaching was less prevalent at all depths and habitat types upon subsequent monitoring during April (15%) and October (3%) 2006. Four species and one genus did not exhibit signs of bleaching throughout the study period (Dendrogyra cylindrus, Eusmilia fastigata, Mussa angulosa, Mycetophyllia aliciae, Scolymia spp.).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limited information currently exists on the recovery periods of bleached corals as well as the spatial extent, causative factors, and the overall impact of bleaching on coral reef ecosystems. During October, 2005, widespread coral bleaching was observed within Buck Island Reef National Monument (BUIS) St. Croix, USVI. The bleaching event was preceded by 10 weeks of higher than average water temperatures (28.9-30.1°C). Random transects (100 square meters) over hard bottom habitats (N=94) revealed that approximately 51% of live coral cover was bleached. Nineteen of 23 coral species within 16 genera and two hydrocoral species exhibited signs of bleaching; species-specific bleaching patterns were variable throughout the study area. Coral cover for Montastraea annularisand species of the genus Agariciawere the most affected, while other species exhibited variability to bleaching. Although a weak but significant negative relationship (r2=0.10, P=0.0220) was observed, bleaching was evident at all depths (1.5-28 m). Bleaching was spatially autocorrelated (P=0.001) and hot-spot analysis identified a cluster of high bleaching stations northeast of Buck Island. Bleaching was significantly reduced within all depth zones and habitat types upon subsequent monitoring during April (15%) and October (3%) 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of this study was to assess the efficacy of the Virgin Islands Coral Reef National Monument (VICR), a marine protected area in St John, US Virgin Islands. Surveys of habitat and fishes inside and outside of VICR were conducted in 2003-2008. Areas outside the VICR had significantly more scleractinian corals, greater habitat complexity, and greater species richness and density of reef fishes than areas inside., Areas inside and outside the VICR exhibited significant decreases in percent scleractinian coral coverage over the study period. A contrasting trend of increasing macroalgal cover was also observed. No clear effect of the severe 2005 coral bleaching event was observed suggesting other causal factors. No obvious trends in the fish community were observed across the study period. The significant decline in habitat condition, coupled with the initial incorporation of some of the more degraded reefs into the marine protected area may result in a longer time period necessary to detect positive changes in the St. John coral reef ecosystem and associated reef fish abundance and community structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In May 2006, the NOAA National Ocean Service (NOS), in conjunction with the EPA National Health and Environmental Effects Laboratory (NHEERL), conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters throughout the mid-Atlantic Bight (MAB) portion of the eastern U.S. continental shelf. The study area encompassed the region from Cape Cod, MA and Nantucket Shoals in the northeast to Cape Hatteras in the south, and was defined using a one nautical mile buffer of the shoreline extended seaward to the shelf break (~100-m depth contour). A total of 50 stations were targeted for sampling using standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna). Through coordination with the NOAA Fisheries Service/Northeast Fisheries Science Center (NFS/NEFSC), samples of summer flounder (Paralichthys dentatus) also were obtained from 30 winter 2007 bottom-trawl survey stations in overlapping portions of the study area and used for analysis of chemical-contaminant body burdens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coral reef ecosystems of the Virgin Islands Coral Reef National Monument, Virgin Islands National Park and the surrounding waters of St. John, U.S. Virgin Islands are a precious natural resource worthy of special protection and conservation. The mosaic of habitats including coral reefs, seagrasses and mangroves, are home to a diversity of marine organisms. These benthic habitats and their associated inhabitants provide many important ecosystem services to the community of St. John, such as fishing, tourism and shoreline protection. However, coral reef ecosystems throughout the U.S. Caribbean are under increasing pressure from environmental and anthropogenic stressors that threaten to destroy the natural heritage of these marine habitats. Mapping of benthic habitats is an integral component of any effective ecosystem-based management approach. Through the implementation of a multi-year interagency agreement, NOAA’s Center for Coastal Monitoring and Assessment - Biogeography Branch and the U.S. National Park Service (NPS) have completed benthic habitat mapping, field validation and accuracy assessment of maps for the nearshore marine environment of St. John. This work is an expansion of ongoing mapping and monitoring efforts conducted by NOAA and NPS in the U.S. Caribbean and replaces previous NOAA maps generated by Kendall et al. (2001) for the waters around St. John. The use of standardized protocols enables the condition of the coral reef ecosystems around St. John to be evaluated in context to the rest of the Virgin Island Territories and other U.S. coral ecosystems. The products from this effort provide an accurate assessment of the abundance and distribution of marine habitats surrounding St. John to support more effective management and conservation of ocean resources within the National Park system. This report documents the entire process of benthic habitat mapping in St. John. Chapter 1 provides a description of the benthic habitat classification scheme used to categorize the different habitats existing in the nearshore environment. Chapter 2 describes the steps required to create a benthic habitat map from visual interpretation of remotely sensed imagery. Chapter 3 details the process of accuracy assessment and reports on the thematic accuracy of the final maps. Finally, Chapter 4 is a summary of the basic map content and compares the new maps to a previous NOAA effort. Benthic habitat maps of the nearshore marine environment of St. John, U.S. Virgin Islands were created by visual interpretation of remotely sensed imagery. Overhead imagery, including color orthophotography and IKONOS satellite imagery, proved to be an excellent source from which to visually interpret the location, extent and attributes of marine habitats. NOAA scientists were able to accurately and reliably delineate the boundaries of features on digital imagery using a Geographic Information System (GIS) and fi eld investigations. The St. John habitat classification scheme defined benthic communities on the basis of four primary coral reef ecosystem attributes: 1) broad geographic zone, 2) geomorphological structure type, 3) dominant biological cover, and 4) degree of live coral cover. Every feature in the benthic habitat map was assigned a designation at each level of the scheme. The ability to apply any component of this scheme was dependent on being able to identify and delineate a given feature in remotely sensed imagery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The National Oceanic and Atmospheric Administration’s (NOAA) Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch and the U.S. National Park Service (NPS) have completed mapping the moderate-depth marine environment south of St. John. This work is an expansion of ongoing mapping and monitoring efforts conducted by NOAA and NPS in the U.S. Caribbean. The standardized protocols used in this effort will enable scientists and managers to quantitatively compare moderate-depth coral reef ecosystems around St. John to those throughout the U.S. Territories. These protocols and products will also help support the effective management and conservation of the marine resources within the National Park system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA’s Mussel Watch Program was designed to monitor the status and trends of chemical contamination of U.S. coastal waters, including the Great Lakes. The Program began in 1986 and is one of the longest running, continuous coastal monitoring programs that is national in scope. NOAA established Mussel Watch in response to a legislative mandate under Section 202 of Title II of the Marine Protection, Research and Sanctuaries Act (MPRSA) (33 USC 1442). In addition to monitoring contaminants throughout the Nation’s coastal shores, Mussel Watch stores samples in a specimen bank so that trends can be determined retrospectively for new and emerging contaminants of concern. In recent years, flame retardant chemicals, known as polybrominated diphenyl ethers (PBDEs), have generated international concern over their widespread distribution in the environment, their potential to bioaccumulate in humans and wildlife, and concern for suspected adverse human health effects. The Mussel Watch Program, with additional funding provided by NOAA’s Oceans and Human Health Initiative, conducted a study of PBDEs in bivalve tissues and sediments. This report, which represents the first national assessment of PBDEs in the U.S. coastal zone, shows that they are widely distributed. PBDE concentrations in both sediment and bivalve tissue correlate with human population density along the U.S. coastline. The national and watershed perspectives given in this report are intended to support research, local monitoring, resource management, and policy decisions concerning these contaminants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter covers coral reef areas under the jurisdiction of the USA in the Wider Caribbean: Florida; Flower Garden Banks; Puerto Rico; U.S. Virgin Islands; and Navassa. The following information is condensed from six chapters of The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States: 2008. Access to the full text of this comprehensive report is available at: http://ccma.nos.noaa.gov/stateofthereefs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report is a result of long-term fish monitoring studies supported by the National Park Service (NPS) at the Virgin Islands National Park since 1988 and is now a joint NPS and NOAA collaboration. Reef fish monitoring data collected from 1988 to 2006 within Virgin Islands National Park (VINP) and adjacent reefs around St. John, U.S. Virgin Islands (USVI) were analyzed to provide information on the status of reef fishes during the monitoring period. Monitoring projects were initiated by the National Park Service (NPS) in the 1980s to provide useful data for evaluation of resources and for development of a long-term monitoring program. Monthly monitoring was conducted at two reef sites (Yawzi Point and Cocoloba Cay) starting in November 1988 for 2.5 years to document the monthly/seasonal variability in reef fish assemblages. Hurricane Hugo (a powerful Category 4 storm) struck the USVI in September 1989 resulting in considerable damage to the reefs around St. John. Abundance of fishes was lower at both sites following the storm, however, a greater effect was observed at Yawzi Point, which experienced a more direct impact from the hurricane. The storm affected species differently, with some showing only small, short-term declines in abundance, and others, such as the numerically abundant blue chromis (Chromis cyanea), a planktivorous damselfish, exhibiting a larger and longer recovery period. This report provides: 1) an evaluation of sampling methods, sample size, and methods used during the sampling period, 2) an evaluation of the spatial and temporal variability in reef fish assemblages at selected reef sites inside and outside of VINP, and 3) an evaluation of trends over 17 years of monitoring at the four reference sites. Comparisons of methods were conducted to standardize assessments among years. Several methods were used to evaluate sample size requirements for reef fish monitoring and the results provided a statistically robust justification for sample allocation.