219 resultados para Organization climate
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): High alpine environments provide a variety of paleorecords based on physical (glaciers, glacio-lacustrine sedimentation) and biological systems (tree rings, tree-line fluctuations). These records have varying temporal resolution and contain different climate-related signals but, in concert, provide a more comprehensive reconstruction of past climates than is possible from any single archive.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Recently, paleoceanographers have been challenged to produce reliable proxies of climate variables that can be incorporated into climate models. In developing proxies using time series of annual radiolarian species fluxes from Santa Barbara Basin, we identify groups of species associated with years of extreme sea surface temperatures and sea level heights.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Our objective is to combine terrestrial and oceanic records for reconstructing West Coast climate. Tree rings and marine laminated sediments provide high-resolution, accurately dated proxy data on the variability of climate and on the productivity of the ocean and have been used to reconstruct precipitation, temperature, sea level pressure, primary productivity, and other large-scale parameters. We present here the latest Santa Barbara basin varve chronology for the twentieth century as well as a newly developed tree-ring chronology for Torrey pine.
Resumo:
Understanding the link between climate and regional hydrologic processes is of primary importance in estimating the possible impact of future climate change and in the validation of climate models that attempt to simulate such changes. Two distinct problems need to be addressed: quantitatively establishing the link between changes in climate and the hydrologic cycle, and determining how these changes are expressed over differing temporal and spatial scales. To solve these problems, our interdisciplinary group is studying important aspects of hydrology, paleolimnology, geochemistry, and paleontology as they apply to climate-driven hydrologic changes.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): High-resolution oxygen-18 and total inorganic carbon (TIC) studies of cored sediments from the Owens Lake Basin, California, indicate that Owens Lake was hydrologically open (overflowing) most of the time between 52,500 and 12,500 carbon-14 YBP. ... The lack of a strong correspondence between North Atlantic climate records and the Owens Lake delta-oxygen-18 record has two possible explanations: (1) the sequence of large and abrupt climate change indicated in North Atlantic records is not global in scope and is largely confined to the North Atlantic and surrounding areas, or (2) Owens Lake is located in a part of the Great Basin that is relatively insensitive to the effects of climate perturbations recorded in the North Atlantic region.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Paleoclimatic variations in western North America depend on a hierarchy of temporal and spatial controls that can be examined using a combination of modeling studies and data synthesis. ... The regional vegetation response to large-scale changes in the climate system of the last 21,000 years is used as a conceptual model to help explain earlier vegetation and climate at two localities.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): A chronology of documented regional and global warm and cold event records is collated along with documented ecosystem response records and health threat/sequellae records for the historical period. Patterns of societal response to cold periods punctuated by warm periods have been associated with considerable human health impacts, stimulated by blooms in disease vectors such as rodents and insects.
Resumo:
The appendices include the workshop agenda, a list of poster presentations, and a list of attendees.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): High resolution paleobotanical records provide sufficient detail to correlate events regionally. Once correlated events can be examined in tandem to determine the underlying inputs that fashioned them. Several localities in the Great Basin have paleobotanical records of sufficient detail to generate regional reconstructions of vegetation changes for the last 2 ka and provide conclusions as to the climates that caused them.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The 1977 climate shift was characterized by low chlorophyll a concentrations and a shift in phytoplankton community composition throughout the upper San Francisco Bay estuary. ... For climate to be a driving force in phytoplankton communities, it must affect mechanisms that control biomass and community composition. The influence of climate on environmental conditions and phytoplankton community composition among water-year types was examined using 19 years of physical, chemical, and phytoplankton data collected monthly at 15 stations throughout the estuary.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Torrey pine (Pinus torreyana Parry ex Carr.) has one of the most limited geographical ranges and population size in the Pinus genus; it is present only on Santa Rosa Island and on the coast between San Diego and Del Mar, where our research was conducted. A 168-year chronology (1827-1994) was developed using 28 increment cores extracted from 15 living and 2 dead stranding trees at Torrey Pines State Reserve, San Diego, California. ... The spatial correlation with western North America winter and spring precipitation, as well as with published tree-ring chronologies, indicates a connection with the American Southwest. Global correlation maps with winter sea level pressure and sea surface temperature are consistent with the hypothesis that San Diego precipitation is affected by a southerly displaced North Pacific storm track and by warmer water farther south, both leading to higher transport of lower latitude moisture.
Resumo:
A key to understanding the causes for climate variability lies in understanding how atmospheric circulation influences regional climate. The goal of this research is to investigate the long-term relationships between atmospheric circulation and winter climate in the southwestern United States. Patterns of atmospheric circulation are described by circulation indices, and winter climate is defined as number of days with precipitation and mean maximum temperature for the winter wet season, November through March. Records of both circulation indices and climate variables were reconstructed with tree-ring chronologies for the period 1702-1983. The years of the highest and lowest values of circulation indices and climate variables were compared in order to investigate possible spatial and temporal relationships between extremes in circulation and climate.
Resumo:
Recent papers provide detailed analyses of more than 40 high-resolution time series culled from the extensive paleoclimate literature that appear to define cyclical elements of the Solar-Insolation/Tidal-Resonance Climate Model. This model was earlier referred to as the Milankovitch/Pettersson Climatic Theory. This paper provides comparable analyses of an additional 20 or so, evidently supportive, climate and volcanic time series. The tree-ring, historical, pollen, cultural, time-frequency, and hydrologic records range in length from 400 to 90,000 years and spatially from Alaska to Tierra del Fuego.
Resumo:
Abstracts of 24 oral presentations and 25 poster presentations.