291 resultados para Lung-fishes, Fossil
Larval supply and recruitment of coral reef fishes to Marine Reserves in the upper Florida Keys, USA
Resumo:
We examined the reactions of fishes to a manned submersible and a remotely operated vehicle (ROV) during surveys conducted in habitats of rock and mud at depths of 30–408 m off central California in 2007. We observed 26 taxa for 10,550 fishes observed from the submersible and for 16,158 fishes observed from the ROV. A reaction was defined as a distinct movement of a fish that, for a benthic or hovering individual, was greater than one body length away from its initial position or, for a swimming individual, was a change of course or speed. Of the observed fishes, 57% reacted to the ROV and 11% reacted to the submersible. Aggregating species and those species initially observed off the seafloor reacted most often to both vehicles. Fishes reacted more often to each vehicle when they were >1 m above the seafloor (22% of all fishes >1 m above the seafloor reacted to the submersible and 73% to the ROV) than when they were in contact with the seafloor (2% of all reactions to the submersible and 18% to the ROV). Fishes reacted by swimming away from both vehicles rather than toward them. Consideration of these reactions can inform survey designs and selection of survey tools and can, thereby, increase the reliability of fish assemblage metrics (e.g., abundance, density, and biomass) and assessments of fish and habitat associations.
Influence of soak time and fish accumulation on catches of reef fishes in a multispecies trap survey
Resumo:
Catch rates from fishery-independent surveys often are assumed to vary in proportion to the actual abundance of a population, but this approach assumes that the catchability coefficient (q) is constant. When fish accumulate in a gear, the rate at which the gear catches fish can decline, and, as a result, catch asymptotes and q declines with longer fishing times. We used data from long-term trap surveys (1990–2011) in the southeastern U.S. Atlantic to determine whether traps saturated for 8 reef fish species because of the amount of time traps soaked or the level of fish accumulation (the total number of individuals of all fish species caught in a trap). We used a delta-generalized-additive model to relate the catch of each species to a variety of predictor variables to determine how catch was influenced by soak time and fish accumulation after accounting for variability in catch due to the other predictor variables in the model. We found evidence of trap saturation for all 8 reef fish species examined. Traps became saturated for most species across the range of soak times examined, but trap saturation occurred for 3 fish species because of fish accumulation levels in the trap. Our results indicate that, to infer relative abundance levels from catch data, future studies should standardize catch or catch rates with nonlinear regression models that incorporate soak time, fish accumulation, and any other predictor variable that may ultimately influence catch. Determination of the exact mechanisms that cause trap saturation is a critical need for accurate stock assessment, and our results indicate that these mechanisms may vary considerably among species.
Resumo:
Piscivorous fishes, many of which are economically valuable, play an important role in marine ecosystems and have the potential to affect fish and invertebrate populations at lower trophic levels. Therefore, a quantitative understanding of the foraging ecology of piscivores is needed for ecosystem-based fishery management plans to be successful. Abundance and stomach contents of seasonally co-occurring piscivores were examined to determine overlap in resource use for Summer Flounder (Paralichthys dentatus; 206–670 mm total length [TL]), Weakfish (Cynoscion regalis; 80–565 mm TL), Bluefish (Pomatomus saltatrix; 55–732 mm fork length [FL]), and Striped Bass (Morone saxatilis; 422–920 mm FL). We collected samples from monthly, fishery-independent trawl surveys conducted on the inner continental shelf (5–27 m) off New Jersey from June to October 2005. Fish abundances and overlaps in diet and habitat varied over this study period. A wide range of fish and invertebrate prey was consumed by each species. Diet composition (determined from 1997 stomachs with identifiable contents) varied with ontogeny (size) and indicated limited overlap between most of the species size classes examined. Although many prey categories were shared by the piscivores examined, different temporal and spatial patterns in habitat use seemed to alleviate potential competition for prey. Nevertheless, the degree of overlap in both fish distributions and diets increased severalfold in the fall as species left estuaries and migrated across and along the study area. Therefore, the transitional period of fall migration, when fish densities are higher than at other times of the year, may be critical for unraveling resource overlap for these seasonally migrant predators.
Resumo:
A survey of the larval and juvenile fishes associated with the pelagic Sargassum habitat in the South Atlantic Bight and adjacent western Atlantic Ocean was conducted from July 1991 through March 1993. Fishes representing 104 taxonomic categories were identified, including reef fishes, coastal demersal, coastal pelagic, epipelagic and mesopelagic species. The most important families were Balistidae and Carangidae, each represented by 15 species. Species composition, species diversity and abundance varied both seasonally and regionally. Diversity was highest during spring through fall over the outer continental shelf and in the Gulf Stream. Abundance decreased from spring through winter and from the continental shelf into offshore waters. The numbers of fishes and fish biomass were found to be positively correlated with the wet weight of algae in most cases examined. The results of this study will be useful to fisheries managers assessing the potential impacts of commercial Sargassum harvesting in the region.