358 resultados para Little Kennebec Bay
Resumo:
There is no evidence that a commercial bay scallop fishery exists anywhere in the northwestern Gulf of Mexico. No data concerning scallop abundance or distribution was found for Alabama, Mississippi, and Louisiana. Texas is the only state west of Florida where bay scallop populations have been documented. These records come from a variety of literature sources and the fisheries-independent data collected by Texas Parks and Wildlife Department (1982–2005). Although common in the diet of prehistoric peoples living on the Texas coast, recent (last ~50 years) bay scallop population densities tend to be low and exhibit “boom–bust” cycles of about 10–15 years. The Laguna Madre, is the only place on the Texas coast where scallops are relatively abundant; this is likely due to extensive seagrasses cover (>70%) and salinities that typically exceed 35 psu. The lack of bay scallop fishery development in the northwestern Gulf of Mexico is probably due to variable but generally low densities of the species combined with a limited amount of suitable (i.e. seagrass
Resumo:
Zostera marina is a member of a widely distributed genus of seagrasses, all commonly called eelgrass. The reported distribution of eelgrass along the east coast of the United States is from Maine to North Carolina. Eelgrass inhabits a variety of coastal habitats, due in part to its ability to tolerate a wide range of environmental parameters. Eelgrass meadows provide habitat, nurseries, and feeding grounds for a number of commercially and ecologically important species, including the bay scallop, Argopecten irradians. In the early 1930’s, a marine event, termed the “wasting disease,” was responsible for catastrophic declines in eelgrass beds of the coastal waters of North America and Europe, with the virtual elimination of Z. marina meadows in the Atlantic basin. Following eelgrass declines, disastrous losses were documented for bay scallop populations, evidence of the importance of eelgrass in supporting healthy scallop stocks. Today, increased turbidity arising from point and non-point source nutrient loading and sediment runoff are the primary threats to eelgrass along the Atlantic coast and, along with recruitment limitation, are likely reasons for the lack of recovery by eelgrass to pre-1930’s levels. Eelgrass is at a historical low for most of the western Atlantic with uncertain prospects for systematic improvement. However, of all the North American seagrasses, eelgrass has a growth rate and strategy that makes it especially conducive to restoration and several states maintain ongoing mapping, monitoring, and restoration programs to enhance and improve this critical resource. The lack of eelgrass recovery in some areas, coupled with increasing anthropogenic impacts to seagrasses over the last century and heavy fishing pressure on scallops which naturally have erratic annual quantities, all point to a fishery with profound challenges for survival.
Resumo:
This article covers the biology and the history of the bay scallop habitats and fishery from Massachusetts to North Carolina. The scallop species that ranges from Massachusetts to New York is Argopecten irradians irradians. In New Jersey, this species grades into A. i. concentricus, which then ranges from Maryland though North Carolina. Bay scallops inhabit broad, shallow bays usually containing eelgrass meadows, an important component in their habitat. Eelgrass appears to be a factor in the production of scallop larvae and also the protection of juveniles, especially, from predation. Bay scallops spawn during the warm months and live for 18–30 months. Only two generations of scallops are present at any time. The abundances of each vary widely among bays and years. Scallops were harvested along with other mollusks on a small scale by Native Americans. During most of the 1800’s, people of European descent gathered them at wading depths or from beaches where storms had washed them ashore. Scallop shells were also and continue to be commonly used in ornaments. Some fishing for bay scallops began in the 1850’s and 1860’s, when the A-frame dredge became available and markets were being developed for the large, white, tasty scallop adductor muscles, and by the 1870’s commercial-scale fishing was underway. This has always been a cold-season fishery: scallops achieve full size by late fall, and the eyes or hearts (adductor muscles) remain preserved in the cold weather while enroute by trains and trucks to city markets. The first boats used were sailing catboats and sloops in New England and New York. To a lesser extent, scallops probably were also harvested by using push nets, picking them up with scoop nets, and anchor-roading. In the 1910’s and 1920’s, the sails on catboats were replaced with gasoline engines. By the mid 1940’s, outboard motors became more available and with them the numbers of fishermen increased. The increases consisted of parttimers who took leaves of 2–4 weeks from their regular jobs to earn extra money. In the years when scallops were abundant on local beds, the fishery employed as many as 10–50% of the towns’ workforces for a month or two. As scallops are a higher-priced commodity, the fishery could bring a substantial amount of money into the local economies. Massachusetts was the leading state in scallop landings. In the early 1980’s, its annual landings averaged about 190,000 bu/yr, while New York and North Carolina each landed about 45,000 bu/yr. Landings in the other states in earlier years were much smaller than in these three states. Bay scallop landings from Massachusetts to New York have fallen sharply since 1985, when a picoplankton, termed “brown tide,” bloomed densely and killed most scallops as well as extensive meadows of eelgrass. The landings have remained low, large meadows of eelgrass have declined in size, apparently the species of phytoplankton the scallops use as food has changed in composition and in seasonal abundance, and the abundances of predators have increased. The North Carolina landings have fallen since cownose rays, Rhinoptera bonsais, became abundant and consumed most scallops every year before the fishermen could harvest them. The only areas where the scallop fishery remains consistently viable, though smaller by 60–70%, are Martha’s Vineyard, Nantucket, Mass., and inside the coastal inlets in southwestern Long Island, N.Y.
Resumo:
The marine invertebrates of North America received little attention before the arrival of Louis Agassiz in 1846. Agassiz and his students, particularly Addison E. Verrill and Richard Rathbun, and Agassiz's colleague Spencer F. Baird, provided the concept and stimulus for expanded investigations. Baird's U.S. Commission of Fish and Fisheries (1871) provided a principal means, especially through the U.S. Fisheries Steamer Albatross (1882). Rathbun participated in the first and third Albatrossscientific cruises in 1883-84 and published the fist accounts of Albatross parasitic copepods. The first report of Albatross planktonic copepods was published in 1895 by Wilhelm Giesbrecht of the Naples Zoological Station. Other collections were sent to the Norwegian Georg Ossian Sars. The American Charles Branch Wilson eventually added planktonic copepods to his extensive published works on the parasitic copepods from the Albatross. The Albatross copepods from San Francisco Bay were reported upon by Calvin Olin Esterly in 1924. Henry Bryant Bigelow accompanied the last scientific cruise of the Albatross in 1920. Bigelow incorporated the 1920 copepods into his definitive study of the plankton of the Gulf of Maine. The late Otohiko Tanaka, in 1969, published two reviews of Albatross copepods. Albatross copepods will long be worked and reworked. This great ship and her shipmates were mutually inspiring, and they inspire us still.
Resumo:
California’s Monterey Bay area is an important center of recreational fishing for rockfish of various Sebastes species. The species composition of commercial passenger fishing vessel catches from 1959 to 1994 varied with changes in fishing location and depth. The shift from shallow nearshore locations to deeper offshore locations in the late 1970’s and 1980’s changed the emphasis from the blue rockfish, S. mystinus, of shallow waters to the deeper, commercially fished chilipepper, S. goodei, and bocaccio, S. paucispinis. The mean size of rockfish in the catch increased as the latter species were targeted at greater depths but then declined as stocks of older fish disappeared by the mid 1980’s. During 1960–94 the mean size of all ten leading species in the recreational catch declined. The declines ranged from 1% for canary rockfish, S. pinniger, to 27% for chilipepper. The sizes of the deeper living species declined more than those of shallower species. The low frequency of strong recruitment events and increase in fishing mortality and natural mortality appear to have contributed to the declining mean size. The scarcity of older fish, observed as a drop in mean size to below the size of maturity for 50% of females, leads to concern for future recruitment of the larger species, especially bocaccio, chilipepper, yellowtail rockfish, S. flavidus, and canary rockfish.
Resumo:
Three surveys spanning 28 years were examined for changes in species caught by recreational fishermen from small boats (skiffs) and commercial passenger fishing vessels (CPFV's) in California's Monterey Bay region. As fishing effort increased, the catch of certain nearshore species of rockfish, Sebastes spp., declined. CPFV fishing was conducted farther from port and in deeper water to compensate for declining abundance while most skiffs remained in traditional areas close to port. The trend toward deeper water CPFV fishing has been interrupted only temporarily by increased availability of nearshore species. Life history characteristics of rockfish including residential behavior, variable recruitment, and natural longevity contribute to a vulnerability to localized overfishing for several species.
Resumo:
A social study of the shrimp fisheries of Galveston Bay, Tex., and Calcasieu Lake, La., was made during the summer of 1987 to examine the impacts of the seasonal closure of the Federal waters off Texas and to understand the infrastructure and demographic processes of these two diverse fisheries. Survey instruments were administered to 159 shrimp boat captains: 89 from Galveston Bay and 70 from Calcasieu Lake. Shrimp-house owners were interviewed in each region as well. The results suggest that the inshore fisheries (i.e., shrimpers and shrimp houses) are distinct from the offshore fisheries. The infrastructure of the two inshore fisheries examined differ in that the market distribution of shrimp from Galveston Bay was more diffuse than from Calcasieu Lake. Much more of the shrimp harvested from Galveston Bay was channelled into the surrounding community than from Calcasieu Lake. The distribution of age,years as a commercial fisherman, and family involvement in fishing suggest that participation in Calcasieu Lake's and Galveston Bay's inshore fisheries have expanded concurrent with declining economies. While overall the Texas closure had little impact on either of the inshore fisheries, the Galveston Bay shrimpers experienced more of a direct impact on their livelihood than Calcasieu Lake shrimpers.
Resumo:
Raritan Bay is the body of water bounded by New York and New Jersey and lying immediately south of New York City (Fig. 1). It has close proximity to the most concentrated urban and industrial area in the United States. Its history has been one of extensive multiple use by the surrounding human population. Dating from the precolonial and colonial periods, people have employed many types of gear to catch and gather its once abundant fishes and shellfishes. Its beaches were once popular for sun bathing and swimming, but after the 1940's they were essentially abandoned because the water became too polluted. Another large use has been for pleasure boating and the transit and dockage of merchant, passenger, and military vessels. Channels and basins were dug in the bay, bulkheads and jetties were constructed along its shores, and it was a donor source of sand and gravel for construction projects. It has also been a receptor for large quantities of domestic and industrial wastes and, mainly for this reason, it is one ofthe most deteriorated estuaries in the United States.
Resumo:
CDRS Research Highlights, 2004. Plants. Social Sciences. Vertebrates. Invasive Species Total Control Plan. Terrestrial Invertebrates. Project Isabela. Marine Sciences.
Resumo:
Presidential visit. The extraordinary El nino year. The last of the Norwegians. Visits and events at the Darwin Research Station.
Resumo:
Planning. A Galapagos marine park. The feral animals on Santiago Island. Can the Hawaiian Petrel be saved? Education and training programmes. Visitors and events at the Charles Darwin Station (May - October 1982).
Resumo:
Darwin Station Director's report. Release of captive-bred land iguanas. Land iguanas breed on Venecia. The age of the giant tortoise. Visitors and events at the Charles Darwin Research Station (January - April 1982). Photo of Masked Booby and Swallow-tailed Gull.
Resumo:
Changes of Charles Darwin Foundation officers. Scientific staff. Training courses for wardens and guides. Volunteer observers. Flamingos on Isabela. Is there a mate for Lonesome George? Outbreak of matrimony at the Darwin Station. Visitors and events at the Charles Darwin Research Station (July - December 1981). Some recent books.
Resumo:
Issues January - November/December 2012. (PDF contains 88 pages)
Resumo:
This is the report on the Leven estuary project: Fisheries Department final report produced by the Environment Agency North West in 1997. This report contains information about Leven estuary, river Leven catchment, river Crake catchment and the Ulverston Discharges. The Leven estuary is characterised by being very shallow, and shares the extremely variable tides and currents that characterize the whole of Morecambe Bay. There was little detailed knowledge of the impact on the Leven estuary, and particularly its fisheries, of the discharges from Ulverston. There has been some concern expressed by the lave netsmen and the general public about the possible harmful effects of the effluents on the biology of the estuary. In the absence of a definite strategy for the protection and management of the estuary was born this project. The project involves water quality monitoring, effluent and estuary toxicity testing, tracking of effluent plumes, and salmonid tagging and tracking. The entire project commenced in June 1995 and was expected to reach a conclusion in March 1997. The information gained from the project was expected to contribute to the creation of a 'mixing zone' for the effluent, and to improve the environmental management of the estuary and protection of its fishery.