212 resultados para Cooking (Eggs)
Resumo:
Gonadal morphology and reproductive biology of the Black Anglerfish (Lophius budegassa) were studied by examining 4410 specimens collected between June 2007 and December 2010 in the northwestern Mediterranean Sea. Ovaries and testes presented traits common among fishes of the order Lophiiformes. Spawning occurred between November and March. Size at first maturity (L50) was 33.4 cm in total length (TL) for males and 48.2 cm TL for females. Black Anglerfish is a total spawner with group-synchronous oocyte development and determinate fecundity. Fecundity values ranged from 87,569 to 398,986 oocytes, and mean potential fecundity was estimated at 78,929 (standard error of the mean [SE] 13,648) oocytes per kilogram of mature female. This study provides the first description of the presence of 2–3 eggs sharing the same chamber and a semicystic type of spermatogenesis for Black Anglerfish. This new information allows for a better understanding of Black Anglerfish reproduction—knowledge that will be useful for the assessment and management of this species.
Resumo:
Among the papers of Dr. Charles M. Breder bequeathed to the Mote Marine Laboratory by the Breder family are a series of drawings of larval fish and eggs done from 1917 through 1929. The drawings were made with pencil on half and full sheets of buff colored paper. The half sheet drawings are of larval fish, most of which are not identified. The full sheet drawings often contain comments and notes related to laboratory work on fish egg development, and made during the summer of 1929 when Breder was working in the Dry Tortugas.
Resumo:
The summer flounder, Paralichthys dentatus, is overexploited and is currently at very low levels of abundance. This is reflected in the compressed age structure of the population and the low catches in both commercial and recreational fisheries. Declining habitat quantity and quality may be contributing to these declines, however we lack a thorough understanding of the role of habitats in the population dynamics of this species. Stock structure is unresolved and current interpretations, depending on the technique and study area, suggest that there may be two or three spawning populations. If so, these stocks may have differing habitat requirements. In response to this lack of knowledge, this document summarizes and synthesizes the available information on summer flounder habitat in all life history stages (eggs, larvae, juveniles and adults) and identifies areas where further research is needed. Several levels of investigation were conducted in order to produce this document. First, an extensive search for summer flounder habitat information was made, which included both the primary and gray literature as well as unanalyzed data. Second, state and federal fisheries biologists and resource managers in all states within the primary range of summer flounder (Massachusetts to Florida) were interviewed along with a number of fish ecologists and summer flounder experts from the academic and private sectors. Finally, information from all sources was analyzed and synthesized to form a coherent overview. This document first presents an overview of the economic importance and current status of summer flounder (Chapter 1). It then summarizes our present state of knowledge of summer flounder distribution, life history patterns and stock identification (Chapter 2). This is followed by a synopsis of habitat requirements during each life history stage. For convenience, this is presented by general habitat as offshore eggs (Chapter 3), offshore larvae (Chapter 4), estuarine larvae (Chapter 5), estuarine juveniles (Chapter 6), offshore juveniles (Chapter 7) and estuarine and offshore adults (Chapter 8). In several instances, previously undigested data sets are analyzed to provide more detailed information, especially for estuarine juveniles. The information is then discussed in terms of its relevance to resource managers (Chapter 9).
Resumo:
The Indo-Pacific lionfish, Pterois miles and P. volitans, have recently invaded the U.S. east coast and the Caribbean and pose a significant threat to native reef fish communities. Few studies have documented reproduction in pteroines from the Indo-Pacific. This study provides a description of oogenesis and spawn formation in P. miles and P. volitans collected from offshore waters of North Carolina, U.S.A and the Bahamas. Using histological and laboratory observations, we found no differences in reproductive biology between P. miles and P. volitans. These lionfish spawn buoyant eggs that are encased in a hollow mass of mucus produced by specialized secretory cells of the ovarian wall complex. Oocytes develop on highly vascularized peduncles with all oocyte stages present in the ovary of spawning females and the most mature oocytes placed terminally, near the ovarian lumen. Given these ovarian characteristics, these lionfish are asynchronous, indeterminate batch spawners and are thus capable of sustained reproduction throughout the year when conditions are suitable. This mode of reproduction could have contributed to the recent and rapid establishment of these lionfish in the northwestern Atlantic and Caribbean.
Resumo:
Loligo opalescens live less than a year and die after a short spawning period before all oocytes are expended. Potential fecundity (EP), the standing stock of all oocytes just before the onset of spawning, increased with dorsal mantle length (L), where EP = 29.8L. For the average female squid (L of 129 mm), EP was 3844 oocytes. During the spawning period, no oogonia were produced; therefore the standing stock of oocytes declined as they were ovulated. This decline in oocytes was correlated with a decline in mantle condition and an increase in the size of the smallest oocyte in the ovary. Close agreement between the decline in estimated body weight and standing stock of oocytes during the spawning period indicated that maturation and spawning of eggs could largely, if not entirely, be supported by the conversion of energy reserves in tissue. Loligo opalescens, newly recruited to the spawning population, ovulated about 36% of their potential fecundity during their first spawning day and fewer ova were released in subsequent days. Loligo opalescens do not spawn all of their oocytes; a small percentage of the spawning population may live long enough to spawn 78% of their potential fecundity. Loligo opalescens are taken in a spawning grounds fishery off California, where nearly all of the catch are mature spawning adults. Thirty-three percent of the potential fecundity of L. opalescens was deposited before they were taken by the fishery (December 1998−99). This observation led to the development of a management strategy based on monitoring the escapement of eggs from the fishery. The strategy requires estimation of the fecundity realized by the average squid in the population which is a function of egg deposition and mortality rates. A model indicated that the daily total mortality rate on the spawning ground may be about 0.45 and that the average adult may live only 1.67 days after spawning begins. The rate at which eggs escape the fishery was modeled and the sensitivity of changing daily rates of fishing mortality, natural mortality, and egg deposition was examined. A rapid method for monitoring the fecundity of the L. opalescens catch was developed.
Resumo:
From 1995 to 1998, we collected female black rockfish (Sebastes melanops) off Oregon in order to describe their basic reproductive life history and determine age-specific fecundity and temporal patterns in parturition. Female black rockfish had a 50% probability of being mature at 394 mm fork length and 7.5 years-of-age. The proportion of mature fish age 10 or older significantly decreased each year of this study, from 0.511 in 1996 to 0.145 in 1998. Parturition occurred between mid-January and mid-March, and peaked in February. We observed a trend of older females extruding larvae earlier in the spawning season and of younger fish primarily responsible for larval production during the later part of the season. There were differences in absolute fecundity at age between female black rockfish with prefertilization oocytes and female black rockfish with fertilized eggs; fertilized-egg fecundity estimates were considered superior. The likelihood of yolked oocytes reaching the developing embryo stage increased with maternal age. Absolute fecundity estimates (based on fertilized eggs) ranged from 299,302 embryos for a 6-year-old female to 948,152 embryos for a 16-year-old female. Relative fecundity (based on fertilized eggs) increased with age from 374 eggs/g for fish age 6 to 549 eggs/g for fish age 16.
Resumo:
Fishery-independent estimates of spawning biomass (BSP) of the Pacific sardine (Sardinops sagax) on the south and lower west coasts of Western Australia (WA) were obtained periodically between 1991 and 1999 by using the daily egg production method (DEPM). Ichthyoplankton data collected during these surveys, specifically the presence or absence of S. sagax eggs, were used to investigate trends in the spawning area of S. sagax within each of four regions. The expectation was that trends in BSP and spawning area were positively related. With the DEPM model, estimates of BSP will change proportionally with spawning area if all other variables remain constant. The proportion of positive stations (PPS), i.e., stations with nonzero egg counts — an objective estimator of spawning area — was high for all south coast regions during the early 1990s (a period when the estimated BSP was also high) and then decreased after the mid-1990s. There was a decrease in PPS from the mid-1990s to 1999. The particularly low estimates in 1999 followed a severe epidemic mass mortality of S. sagax throughout their range across southern Australia. Deviations from the expected relationship between BSP and PPS were used to identify uncertainty around estimates of BSP. Because estimation of spawning area is subject to less sampling bias than estimation of BSP, the deviation in the relation between the two provides an objective basis for adjusting some estimates of the latter. Such an approach is particularly useful for fisheries management purposes when sampling problems are suspected to be present. The analysis of PPS undertaken from the same set of samples from which the DEPM estimate is derived will help provide information for stock assessments and for the management of purse-seine fisheries.
Resumo:
We have studied the reproductive biology of the goldlined seabream (Rhabdosargus sarba) in the lower Swan River Estuary in Western Australia, focusing particularly on elucidating the factors influencing the duration, timing, and frequency of spawning and on determining potential annual fecundity. Our results demonstrate that 1) Rhabdosargus sarba has indeterminate fecundity, 2) oocyte hydration commences soon after dusk (ca. 18:30 h) and is complete by ca. 01:30−04:30 h and 3) fish with ovaries containing migratory nucleus oocytes, hydrated oocytes, or postovulatory follicles were caught between July and November. However, in July and August, their prevalence was low, whereas that of fish with ovaries containing substantial numbers of atretic yolk granule oocytes was high. Thus, spawning activity did not start to peak until September (early spring), when salinities were rising markedly from their winter minima. The prevalence of spawning was positively correlated with tidal height and was greatest on days when the tide changed from flood to ebb at ca. 06:00 h, i.e., just after spawning had ceased. Because our estimate of the average daily prevalence of spawning by females during the spawning season (July to November) was 36.5%, individual females were estimated to spawn, on average, at intervals of about 2.7 days and thus about 45 times during that period. Therefore, because female R. sarba with total lengths of 180, 220, and 260 mm were estimated to have batch fecundities of about 4500, 7700, and 12,400 eggs, respectively, they had potential annual fecundities of about 204,300, 346,100 and 557,500 eggs, respectively. Because spawning occurs just prior to strong ebb tides, the eggs of R. sarba are likely to be transported out of the estuary into coastal waters where salinities remain at ca. 35‰. Such downstream transport would account for the fact that, although R. sarba exhibits substantial spawning activity in the lower Swan River Estuary, few of its early juveniles are recruited into the nearshore shallow waters of this estuary.
Resumo:
Fecundity (F, number of brooded eggs) and egg size were estimated for Hawaiian spiny lobster (Panulirus marginatus) at Necker Bank, North-western Hawaiian Islands (NWHI), in June 1999, and compared with previous (1978–81, 1991) estimates. Fecundity in 1999 was best described by the power equations F = 7.995 CL 2.4017, where CL is carapace length in mm (r2=0.900), and F = 5.174 TW 2.758, where TW is tail width in mm (r2=0.889) (both n=40; P< 0.001). Based on a log-linear model ANCOVA, size-specific fecundity in 1999 was 18% greater than in 1991, which in turn was 16% greater than during 1978–81. The additional increase in size-specific fecundity observed in 1999 is interpreted as evidence for further compensatory response to decreased lobster densities and increased per capita food resources that have resulted either from natural cyclic declines in productivity, high levels of harvest by the commercial lobster trap fishery, or both.
Resumo:
The reproductive biology of the whitemouth croaker (Micropogonias furnieri) inhabiting the estuarine waters of the Río de la Plata (Argentina-Uruguay) was studied by using histological analysis of the ovaries. Samples were collected during the spawning peak and the end of two breeding seasons (November 1995–Feb-ruary 1996 and November 1997–March 1998). Micropogonias furnieri is a multiple spawner with indeterminate annual fecundity. Spawning frequency, determined by using the percentage of females with postovulatory follicles, was about 31% in November 1995 and 25% in February 1996. At these frequencies, a female on average spawned a new batch of eggs every 3–4 days during the spawning season. Batch fecundity was fitted to a power function of length and a linear function of ovary-free female weight. The number of hydrated oocytes decreased at the end of the breeding season, coinciding with an increase of atresia. Annual egg production for a 40-cm-TL female was estimated to be between 3,300,000 and 7,300,000 eggs. In addition to the seasonal decrease in fecundity and spawning activity, a decline in egg size and weight toward the end of the breeding season was also observed.
Resumo:
The tautog, Tautoga onitis (Linnaeus), ranges from Nova Scotia to South Carolina and has become a popular target for recreational and commercial fisheries. Although tautog are a multiple spawning species, reproductive potential, measured as annual fecundity, has not been estimated previously with methods (batch fecundity, spawning frequency) necessary for a species with indeterminate annual fecundity. A total of 960 tautog were collected from the mouth of the Rappahannock River in the lower Chesapeake Bay to 45 km offshore of Virginia’s coastline to investigate tautog reproductive biology in the southern portion of the species range. Tautog did not exhibit a 1:1 sex ratio; 56% were females. Male tautog reached 50% maturity at 218 mm TL, females at 224 mm TL. Tautog spawned from 7 April 1995 to 15 June 1995, at locations from the York River to 45 km offshore. Batch fecundity estimates ranged from 2800 to 181,200 eggs per spawning for female tautog age 3–9, total length 259– 516 mm. Mean batch fecundity ±SEM for female tautog ages 4–6 was 54,243 ±2472 eggs and 106,256 ±3837 eggs for females ages 7–9. Spawning frequency was estimated at 1.2 days, resulting in 58 spawning days per female in 1995. Estimates of potential annual fecundity for tautog ages 3–9 ranged from 160,000 to 10,510,000 eggs.
Resumo:
Horseshoe crabs (Limulus polyphemus) are caught by commercial fishermen for use as bait in eel and whelk fisheries (Berkson and Shuster, 1999)—fisheries with an annual economic value of $13 to $17 million (Manion et al.1). Horse-shoe crabs are ecologically important, as well (Walls et al., 2002). Migratory shorebirds rely on horseshoe crab eggs for food as they journey from South American wintering grounds to Arctic breeding grounds (Clark, 1996). Horse-shoe crabs are also essential for public health (Berkson and Shuster, 1999). Biomedical companies bleed horse-shoe crabs to extract a chemical used to detect the presence of endotoxins pathogenic to humans in injectable and implantable medical devices (Novitsky, 1984; Mikkelsen, 1988). Bled horseshoe crabs are returned to the wild, subject to the possibility of postbleeding mortality. Recent concerns of overharvesting have led to conflicts among commercial fishermen, environmentalists acting on behalf of the shorebirds, and biomedical companies (Berkson and Shuster, 1999; Walls et al., 2002).
Resumo:
Each spring horseshoe crabs (Limulus polyphemus L.) emerge from Delaware Bay to spawn and deposit their eggs on the foreshore of sandy beaches (Shuster and Botton, 1985; Smith et al., 2002a). From mid-May to early June, migratory shorebirds stopover in Delaware Bay and forage heavily on horseshoe crab eggs that have been transported up onto the beach (Botton et al., 1994; Burger et al., 1997; Tsipoura and Burger, 1999). Thus, estimating the quantity of horseshoe crab eggs in Delaware Bay beaches can be useful for monitoring spawning activity and assessing the amount of forage available to migratory shorebirds.
Resumo:
Portunus pelagicus was collected at regular intervals from two marine embayments and two estuaries on the lower west coast of Australia and from a large embayment located approximately 800 km farther north. The samples were used to obtain data on the reproductive biology of this species in three very different environments. Unlike females, the males show a loosening of the attachment of the abdominal flap to the cephalothorax at a prepubertal rather than a pubertal molt. Males become gonadally mature (spermatophores and seminal fluid present in the medial region of the vas deferentia) at a very similar carapace width (CW) to that at which they achieve morphometric maturity, as reflected by a change in the relative size of the largest cheliped. Logistic curves, derived from the prevalence of mature male P. pelagicus, generally had wider confidence limits with morphometric than with gonadal data. This presumably reflects the fact that the morphometric (allometric) method of classifying a male P. pelagicus as mature employs probabilities and is thus indirect, whereas gonadal structure allows a mature male to be readily identified. However, the very close correspondence between the CW50’s derived for P. pelagicus by the two methods implies that either method can be used for management purposes. Portunus pelagicus attained maturity at a significantly greater size in the large embayment than in the four more southern bodies of water, where water temperatures were lower and the densities of crabs and fishing pressure were greater. As a result of the emigration of mature female P. pelagicus from estuaries, the CW50’s derived by using the prevalence of mature females in estuaries represent overestimates for those populations as a whole. Estimates of the number of egg batches produced in a spawning season ranged from one in small crabs to three in large crabs. These data, together with the batch fecundities of different size crabs, indicate that the estimated number of eggs produced by P. pelagicus during the spawning season ranges from about 78,000 in small crabs (CW=80 mm) to about 1,000,000 in large crabs (CW=180 mm).
Resumo:
This study reports new information about searobin (Prionotus spp.) early life history from samples collected with a Tucker trawl (for planktonic stages) and a beam trawl (for newly settled fish) from the coastal waters of New Jersey. Northern searobin, Prionotus carolinus, were much more numerous than striped searobin, P. evolans, often by an order of magnitude. Larval Prionotus were collected during the period July–October and their densities peaked during September. For both species, notochord flexion was complete at 6–7 mm standard length (SL) and individuals settled at 8–9 mm SL. Flexion occurred as early as 13 days after hatching and settlement occurred as late as 25 days after hatching, according to ages estimated from sagittal microincrements. Both species settled directly in continental shelf habitats without evidence of delayed metamorphosis. Spawning, larval dispersal, or settlement may have occurred within certain estuaries, particularly for P. evolans; thus collections from shelf areas alone do not permit estimates of total larval production or settlement rates. Reproductive seasonality of P. carolinus and P. evolans may vary with respect to latitude and coastal depth. In this study, hatching dates and sizes of age-0 P. carolinus varied with respect to depth or distance from the New Jersey shore. Older and larger age-0 individuals were found in deeper waters. These variations in searobin age and size appear to be the combined result of intraspecific variations in searobin reproductive seasonality and the limited capability of searobin eggs and larvae to disperse.