393 resultados para coastal islands
Resumo:
Coastal managers need accessible, trusted, tailored resources to help them interpret climate information, identify vulnerabilities, and apply climate information to decisions about adaptation on regional and local levels. For decades, climate scientists have studied the impacts that short term natural climate variability and long term climate change will have on coastal systems. For example, recent estimates based on Intergovernmental Panel on Climate Change (IPCC) warming scenarios suggest that global sea levels may rise 0.5 to 1.4 meters above 1990 levels by 2100 (Rahmstorf 2007; Grinsted, Moore, and Jevrejeva 2009). Many low-lying coastal ecosystems and communities will experience more frequent salt water intrusion events, more frequent coastal flooding, and accelerated erosion rates before they experience significant inundation. These changes will affect the ways coastal managers make decisions, such as timing surface and groundwater withdrawals, replacing infrastructure, and planning for changing land use on local and regional levels. Despite the advantages, managers’ use of scientific information about climate variability and change remains limited in environmental decision-making (Dow and Carbone 2007). Traditional methods scientists use to disseminate climate information, like peer-reviewed journal articles and presentations at conferences, are inappropriate to fill decision-makers’ needs for applying accessible, relevant climate information to decision-making. General guides that help managers scope out vulnerabilities and risks are becoming more common; for example, Snover et al. (2007) outlines a basic process for local and state governments to assess climate change vulnerability and preparedness. However, there are few tools available to support more specific decision-making needs. A recent survey of coastal managers in California suggests that boundary institutions can help to fill the gaps between climate science and coastal decision-making community (Tribbia and Moser 2008). The National Sea Grant College Program, the National Oceanic and Atmospheric Administration's (NOAA) university-based program for supporting research and outreach on coastal resource use and conservation, is one such institution working to bridge these gaps through outreach. Over 80% of Sea Grant’s 32 programs are addressing climate issues, and over 60% of programs increased their climate outreach programming between 2006 and 2008 (National Sea Grant Office 2008). One way that Sea Grant is working to assist coastal decision-makers with using climate information is by developing effective methods for coastal climate extension. The purpose of this paper is to discuss climate extension methodologies on regional scales, using the Carolinas Coastal Climate Outreach Initiative (CCCOI) as an example of Sea Grant’s growing capacities for climate outreach and extension. (PDF contains 3 pages)
Resumo:
This report wi11 focus largely on the suborders Gammaridea, Caprellidea, and Hyperiidea because of their importance in coastal areas of the northeast Pacific Ocean. (PDF contains 27 pages)
Resumo:
(PDF contains 24 pages)
Resumo:
The bay anchovy occurs along the Atlantic and Gulf of Mexico coasts, from Cape Cod, Massachusetts, to Yucatan, Mexico (Hildebrand 1963), except for the Florida Keys where it is apparently absent (Daly 1970). (PDF contains 22 pages)
Resumo:
(PDF contains 24 pages)
Resumo:
Three genetically distinct groups: British Columbia to northern California, Southern California to the northern Baja peninsula, and central and southern Baja California. (PDF contains 21 pages)
Resumo:
Amphibian declines and extinctions have been documented around the world, often in protected natural areas. Concern for this alarming trend has focused attention on the need to document all species of amphibians that occur within U.S. National Parks and to search for any signs that amphibians may be declining. This study, an inventory of amphibian species in Virgin Islands National Park, was conducted from 2001 to 2003. The goals of the project were to create a georeferenced inventory of amphibian species, use new analytical techniques to estimate proportion of sites occupied by each species, look for any signs of amphibian decline (missing species, disease, die-offs, etc.), and to establish a protocol that could be used for future monitoring efforts. Several sampling methods were used to accomplish these goals. Visual encounter surveys and anuran vocalization surveys were conducted in all habitats throughout the park to estimate the proportion of sites or proportion of area occupied (PAO) by amphibian species in each habitat. Line transect methods were used to estimate density of some amphibian species and double observer analysis was used to refine counts based on detection probabilities. Opportunistic collections were used to augment the visual encounter methods for rare species. Data were collected during four sampling periods and every major trail system throughout the park was surveyed. All of the amphibian species believed to occur on St. John were detected during these surveys. One species not previously reported, the Cuban treefrog (Osteopilus septentrionalis), was also added to the species list. That species and two others (Eleutherodactylus coqui and Eleutherodactylus lentus) bring the total number of introduced amphibians on St. John to three. We detected most of the reptile species thought to occur on St. John, but our methods were less suitable for reptiles compared to amphibians. No amphibian species appear to be in decline at this time. We found no evidence of disease or of malformations. Our surveys provide a snapshot picture of the status of the amphibian species, so continued monitoring would be necessary to determine long-term trends, but several potential threats to amphibians were identified. Invasive species, especially the Cuban treefrog, have the potential to decrease populations of native amphibians. Introduced mammalian predators are also a potential threat, especially to the reptiles of St. John, and mammalian grazers might have indirect effects on amphibians and reptiles through habitat modification. Finally, loss of habitat to development outside the park boundary could harm some important populations of amphibians and reptiles on the island.
Resumo:
This review examines water quality and stress indicators at levels of organisation from the individual to the community and beyond by means of three case studies concentrating on rocky shores within the north-east Atlantic. Responses of dogwhelks (Nucella) to tributyltin pollution from antifouling paints is examined as the main case study. There are effects at the individual level (development of male sexual characteristics in the female leading to effective sterility) and population level (reduction in juveniles, few females and eventual population disappearance of dogwhelks in badly contaminated areas) but information on community level effects of dogwhelk demise is sparse. Such effects were simulated by dogwhelk removal experiments on well studied, moderately exposed ledges on shores on the Isle of Man. The removal of dogwhelks reduced the size and longevity of newly established Fucus clumps that had escaped grazing. Removal of dogwhelks also increased the likelihood of algal escapes. In a factorial experiment dogwhelks were shown to be less important than limpets \{Patella) in structuring communities but still had a significant modifying effect by increasing the probability of algal escapes. Community level responses to stress on rocky shores are then explored by reference to catastrophic impacts such as oil spills, using the Torrey Canyon as a case study. Recovery of the system in response to this major perturbation took between 10-15 years through a series of damped oscillations. The final case study is that of indicators of ecosystem level change in response to climate fluctuations, using ratios of northern \{Semibalanus balanoides) and southern (Chthamalus spp.) barnacles. Indices derived from counts on the shore show good correlations with inshore sea-water temperatures after a 2-year lag phase. The use of barnacles to measure offshore changes is reviewed. The discussion considers the use of bioindicators at various levels of organisation.
Resumo:
The aim of this study was to develop a short-term genotoxicity assay for monitoring the marine environment for mutagens. Based on the developing eggs and embryos of the marine mussel Mytilus edulis, an important pollution indicator species, the test employs the sensitive sister chromatid exchange (SCE) technique as its end-point, and exploits the potential of mussel eggs to accumulate mutagenic pollutants from the surrounding sea water. Mussel eggs take up to 6 months to develop while in the gonad, which provides scope for DNA damage to be accumulated over an extended time interval; chromosome damage is subsequently visualised as SCEs in 2-cell-stage embryos after these have been spawned in the laboratory. Methods which measure biological responses to pollutant exposure are able to integrate all the factors (internal and external) which contribute to the exposure. The new cytogenetic assay allows the effects of adult exposure to be interpreted in cells destined to become part of the next generation.
Resumo:
Radio and sonic telemetry were used to investigate the tidal orientation, rate of movement (ROM), and surfacing behavior of nine Kemp's ridley turtles, Lepidochelys kempii, tracked east of the Cedar Keys, Florida. The mean of mean turtle bearings on incoming (48 ± 49 0) and falling (232 ± 41 0) tides was significantly oriented to the mean directions of tidal flow (37±9°, P<0.0025, and 234±9 0, P<0.005, respectively). Turtles had a mean ROM of 0.44±0.33 km/h (range: 0.004-1.758 km/h), a mean surface duration of 18± 15 s (range: 1-88 s), and a mean submergence duration of 8.4± 6.4 min (range: 0.2-60.0 min). ROM was negatively correlated with surface and submergence durations and positively correlated with the number of surfacings. Furthermore, ROMs were higher and surface and submergence durations were shorter during the day. Daily activities of turtles were attributed to food acquisition and bioenergetics.