200 resultados para Estuarine
Resumo:
Grass shrimp, Palaemonetes pugio, are a common inhabitant of US East and Gulf coast salt marshes and are a food source for recreationally and economically important fish and crustacean species. Due to the relationship of grass shrimp with their ecosystem, any significant changes in grass shrimp population may have the potential to affect the estuarine system. Land use is a crucial concern in coastal areas where increasing development impacts the surrounding estuaries and salt marshes and has made grass shrimp population studies a logical choice to investigate urbanization effects. Any impact on tidal creeks will be an impact on grass shrimp populations and their associated micro-environment whether predator, prey or parasitic symbiont. Anthropogenic stressors introduced into the grass shrimp ecosystem may even change the intensity of infections from parasitic symbionts. An ectoparasite found on P. pugio is the bopyrid isopod Probopyrus pandalicola. Little is known about factors that may affect the occurrence of this isopod in grass shrimp populations. The goal was to analyze the prevalence of P. pandalicola in grass shrimp in relation to land use classifications, water quality parameters, and grass shrimp population metrics. Eight tidal creeks in coastal South Carolina were sampled monthly over a three year period. The occurrence of P. pandalicola ranged from 1.2% to 5.7%. Analysis indicated that greater percent water and marsh coverage resulted in a higher incidence of bopyrid occurrence. Analysis also indicated that higher bopyrid incidence occurred in creeks with higher salinity, temperature, and pH but lower dissolved oxygen. The land use characteristics found to limit bopyrid incidence were limiting to grass shrimp (definitive host) populations and probably copepod (intermediate host) populations as well.
Resumo:
This baseline assessment of Jobos Bay and surrounding marine ecosystems consists of a two part series. The first report (Zitello et al., 2008) described the characteristics of the Bay and its watershed, including modeling work related to nutrients and sediment fluxes, based on existing data. The second portion of this assessment, presented in this document, presents the results of new field studies conducted to fill data gaps identified in previous studies, to provide a more complete characterization of Jobos Bay and the surrounding coral reef ecosystems. Specifically, the objective was to establish baseline values for the distribution of habitats, nutrients, contaminants, fi sh, and benthic communities. This baseline assessment is the first step in evaluating the effectiveness in changes in best management practices in the watershed. This baseline assessment is part of the Conservation Effects Assessment Project (CEAP), which is a multi-agency effort to quantify the environmental benefits of conservation practices used by agricultural producers participating in selected U.S. Department of Agriculture (USDA) conservation programs. Partners in the CEAP Jobos Bay Special Emphasis Watershed (SEW) included USDA’s Agricultural Research Service (ARS) and the Natural Resources Conservation Service (NRCS), National Oceanic and Atmospheric Administration (NOAA) and the Government of Puerto Rico. The project originated from an on-going collaboration between USDA and NOAA on the U.S. Coral Reef Task Force. The Jobos Bay watershed was chosen because the predominant land use is agriculture, including agricultural lands adjacent to the Jobos Bay National Estuarine Research Reserve (JBNERR or Reserve), one of NOAA’s 26 National Estuarine Research Reserves (NERR). This report is organized into six chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to Jobos Bay, including the land use and hydrology of the watershed. Chapter 2 is focused on benthic mapping and provides the methods and results of newly created benthic maps for Jobos Bay and the surrounding coral reef ecosystem. Chapter 3 presents the results of new surveys of fish, marine debris, and reef communities of the system. Chapter 4 is focused on the distribution of chemical contaminants in sediments within the Bay and corals outside of the Bay. Chapter 5 focuses on quantifying nutrient and pesticide concentrations in the surface waters at the Reserve’s System-Wide Monitoring Program (SWMP) sites. Chapter 6 is a brief summary discussion that highlights key findings of the entire suite of studies.
Resumo:
A study was conducted, in association with the Alabama and Mississippi National Estuarine Research Reserves (NERRs) in the Gulf of Mexico (GoM) as well as the Georgia, South Carolina, and North Carolina NERRs in the Southeast (SE), to evaluate the impacts of coastal development on tidal creek sentinel habitats, including potential impacts to human health and well-being. Uplands associated with Southeast and Gulf of Mexico tidal creeks, and the salt marshes they drain, are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land cover data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites (Holland et al. 2004, Sanger et al. 2008). The primary objective of this work was to define the relationships between coastal development with its concomitant land cover changes, and non-point source pollution loading and the ecological and human health and wellbeing status of tidal creek ecosystems. Nineteen tidal creek systems, located along the Southeastern United States coast from southern North Carolina to southern Georgia, and five Gulf of Mexico systems from Alabama and Mississippi were sampled during summer (June-August) 2005, 2006 (SE) and 2008 (GoM). Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 29 intertidal and 24 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminant levels including emerging contaminants), pathogen and viral indicators (e.g., fecal coliform, enterococci, F+ coliphages, F- coliphages), and abundance and tissue contamination of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants). Tidal creeks have been identified as a sentinel habitat to assess the impacts of coastal development on estuarine areas in the southeastern US. A conceptual model for tidal creeks in the southeastern US identifies that human alterations (stressors) of upland in a watershed such as increased impervious cover will lead to changes in the physical and chemical environment such as microbial and nutrient pollution (exposures), of a receiving water body which then lead to changes in the living resources (responses). The overall objective of this study is to evaluate the applicability of the current tidal creek classification framework and conceptual model linking tidal creek ecological condition to potential impacts of development and urban growth on ecosystem value and function in the Gulf of Mexico US in collaboration with Gulf of Mexico NERR sites. The conceptual model was validated for the Gulf of Mexico US tidal creeks. The tidal creek classification system developed for the southeastern US could be applied to the Gulf of Mexico tidal creeks; however, some differences were found that warrant further examination. In particular, pollutants appeared to translate further downstream in the Gulf of Mexico US compared to the southeastern US. These differences are likely the result of the morphological and oceanographic differences between the two regions. Tidal creeks appear to serve as sentinel habitats to provide an early warning of the ensuing harm to the larger ecosystem in both the Southeastern and Gulf of Mexico US tidal creeks.
Resumo:
Landscape ecology concepts developed from terrestrial systems have recently emerged as theoretical and analytical frameworks that are equally useful for evaluating the ecological consequences of spatial patterns and structural changes in the submerged landscapes of coastal ecosystems. The benefits of applying a spatially-explicit perspective to resource management and restoration planning in the coastal zone are rapidly becoming apparent. This Theme Section on the application of landscape ecology to the estuarine and coastal environment emerged from a special symposium at the Coastal and Estuarine Research Federation (CERF) 20th Biennial Conference (Estuaries and Coasts in a Changing World) held in Portland, Oregon, USA, in November 2009. The 7 contributions in this Theme Section collectively provide substantial insights into the current status and application of the landscape approach in shallow marine environments, and identify significant knowledge gaps, as well as potential directions for the future advancement of ‘seascape ecology’.
Resumo:
The primary objective of this project, “the Assessment of Existing Information on Atlantic Coastal Fish Habitat”, is to inform conservation planning for the Atlantic Coastal Fish Habitat Partnership (ACFHP). ACFHP is recognized as a Partnership by the National Fish Habitat Action Plan (NFHAP), whose overall mission is to protect, restore, and enhance the nation’s fish and aquatic communities through partnerships that foster fish habitat conservation. This project is a cooperative effort of NOAA/NOS Center for Coastal Monitoring and Assessment (CCMA) Biogeography Branch and ACFHP. The Assessment includes three components; 1. a representative bibliographic and assessment database, 2. a Geographical Information System (GIS) spatial framework, and 3. a summary document with description of methods, analyses of habitat assessment information, and recommendations for further work. The spatial bibliography was created by linking the bibliographic table developed in Microsoft Excel and exported to SQL Server, with the spatial framework developed in ArcGIS and exported to GoogleMaps. The bibliography is a comprehensive, searchable database of over 500 selected documents and data sources on Atlantic coastal fish species and habitats. Key information captured for each entry includes basic bibliographic data, spatial footprint (e.g. waterbody or watershed), species and habitats covered, and electronic availability. Information on habitat condition indicators, threats, and conservation recommendations are extracted from each entry and recorded in a separate linked table. The spatial framework is a functional digital map based on polygon layers of watersheds, estuarine and marine waterbodies derived from NOAA’s Coastal Assessment Framework, MMS/NOAA’s Multipurpose Marine Cadastre, and other sources, providing spatial reference for all of the documents cited in the bibliography. Together, the bibliography and assessment tables and their spatial framework provide a powerful tool to query and assess available information through a publicly available web interface. They were designed to support the development of priorities for ACFHP’s conservation efforts within a geographic area extending from Maine to Florida, and from coastal watersheds seaward to the edge of the continental shelf. The Atlantic Coastal Fish Habitat Partnership has made initial use of the Assessment of Existing Information. Though it has not yet applied the AEI in a systematic or structured manner, it expects to find further uses as the draft conservation strategic plan is refined, and as regional action plans are developed. It also provides a means to move beyond an “assessment of existing information” towards an “assessment of fish habitat”, and is being applied towards the National Fish Habitat Action Plan (NFHAP) 2010 Assessment. Beyond the scope of the current project, there may be application to broader initiatives such as Integrated Ecosystem Assessments (IEAs), Ecosystem Based Management (EBM), and Marine Spatial Planning (MSP).
Resumo:
Bottlenose dolphins (Tursiops truncatus) inhabit estuarine waters near Charleston, South Carolina (SC) feeding, nursing and socializing. While in these waters, dolphins are exposed to multiple direct and indirect threats such as anthropogenic impacts (egs. harassment with boat traffic and entanglements in fishing gear) and environmental degradation. Bottlenose dolphins are protected under the Marine Mammal Protection Act of 1972. Over the years, the percentage of strandings in the estuaries has increased in South Carolina and, specifically, recent stranding data shows an increase in strandings occurring in Charleston, SC near areas of residential development. During the same timeframe, Charleston experienced a shift in human population towards the coastline. These two trends, rise in estuarine dolphin strandings and shift in human population, have raised questions on whether the increase in strandings is a result of more detectable strandings being reported, or a true increase in stranding events. Using GIS, the trends in strandings were compared to residential growth, boat permits, fishing permits, and dock permits in Charleston County from 1994-2009. A simple linear regression analysis was performed to determine if there were any significant relationships between strandings, boat permits, commercial fishing permits, and crabpot permits. The results of this analysis show the stranding trend moves toward Charleston Harbor and adjacent rivers over time which suggests the increase in strandings is related to the strandings becoming more detectable. The statistical analysis shows that the factors that cause human interaction strandings such as boats, commercial fishing, and crabpot line entanglements are not significantly related to strandings further supporting the hypothesis that the increase in strandings are due to increased observations on the water as human coastal population increases and are not a natural phenomenon. This study has local and potentially regional marine spatial planning implications to protect coastal natural resources, such as the bottlenose dolphin, while balancing coastal development.
Resumo:
This paper reviews the scientific data on the ecosystem services provided by shoreline habitats, the evidence for adverse impacts from bulkheading on those habitats and services, and describes alternative approaches to shoreline stabilization, which minimize adverse impacts to the shoreline ecosystem. Alternative shoreline stabilization structures that incorporate natural habitats, also known as living shorelines, have been popularized by environmental groups and state regulatory agencies in the mid-Atlantic. Recent data on living shoreline projects in North Carolina that include a stone sill demonstrate that the sills increase sedimentation rates, that after 3 years marshes behind the sills have slightly reduced biomass, and that the living shoreline projects exhibit similar rates of fishery utilization as nearby natural fringing marshes. Although the current emphasis on shoreline armoring in Puget Sound is on steeper, higher-energy shorelines, armoring of lower-energy shorelines may become an issue in the future with expansion of residential development and projected rates of sea level rise. The implementation of regulatory policy on estuarine shoreline stabilization in North Carolina and elsewhere is presented. The regulatory and public education issues experienced in North Carolina, which have made changes in estuarine shoreline stabilization policy difficult, may inform efforts to adopt a sustainable shoreline armoring strategy in Puget Sound. A necessary foundation for regulatory change in shoreline armoring policy, and public support for that change, is rigorous scientific assessment of the variety of services that natural shoreline habitats provide both to the ecosystem and to coastal communities, and evidence demonstrating that shoreline armoring can adversely impact the provision of those services.
Resumo:
Land-based pollution is commonly identified as a major contributor to the observed deterioration of shallow-water coral reef ecosystem health. Human activity on the coastal landscape often induces nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination and other stressors that have degraded the quality of coastal waters. Coral reef ecosystems throughout Puerto Rico, including Jobos Bay, are under threat from coastal land uses such as urban development, industry and agriculture. The objectives of this report were two-fold: 1. To identify potentially harmful land use activities to the benthic habitats of Jobos Bay, and 2. To describe a monitoring plan for Jobos Bay designed to assess the impacts of conservation practices implemented on the watershed. This characterization is a component of the partnership between the U.S. Department of Agriculture (USDA) and the National Oceanic and Atmospheric Administration (NOAA) established by the Conservation Effects Assessment Project (CEAP) in Jobos Bay. CEAP is a multi-agency effort to quantify the environmental benefits of conservation practices used by private landowners participating in USDA programs. The Jobos Bay watershed, located in southeastern Puerto Rico, was selected as the first tropical CEAP Special Emphasis Watershed (SEW). Both USDA and NOAA use their respective expertise in terrestrial and marine environments to model and monitor Jobos Bay resources. This report documents NOAA activities conducted in the first year of the three-year CEAP effort in Jobos Bay. Chapter 1 provides a brief overview of the project and background information on Jobos Bay and its watershed. Chapter 2 implements NOAA’s Summit to Sea approach to summarize the existing resource conditions on the watershed and in the estuary. Summit to Sea uses a GIS-based procedure that links patterns of land use in coastal watersheds to sediment and pollutant loading predictions at the interface between terrestrial and marine environments. The outcome of Summit to Sea analysis is an inventory of coastal land use and predicted pollution threats, consisting of spatial data and descriptive statistics, which allows for better management of coral reef ecosystems. Chapters 3 and 4 describe the monitoring plan to assess the ecological response to conservation practices established by USDA on the watershed. Jobos Bay is the second largest estuary in Puerto Rico, but has more than three times the shoreline of any other estuarine area on the island. It is a natural harbor protected from offshore wind and waves by a series of mangrove islands and the Punta Pozuelo peninsula. The Jobos Bay marine ecosystem includes 48 km² of mangrove, seagrass, coral reef and other habitat types that span both intertidal and subtidal areas. Mapping of Jobos Bay revealed 10 different benthic habitats of varying prevalence, and a large area of unknown bottom type covering 38% of the entire bay. Of the known benthic habitats, submerged aquatic vegetation, primarily seagrass, is the most common bottom type, covering slightly less than 30% of the bay. Mangroves are the dominant shoreline feature, while coral reefs comprise only 4% of the total benthic habitat. However, coral reefs are some of the most productive habitats found in Jobos Bay, and provide important habitat and nursery grounds for fish and invertebrates of commercial and recreational value.
Resumo:
Hurricanes can cause extensive damage to the coastline and coastal communities due to wind-generated waves and storm surge. While extensive modeling efforts have been conducted regarding storm surge, there is far less information about the effects of waves on these communities and ecosystems as storms make landfall. This report describes a preliminary use of NCCOS’ WEMo (Wave Exposure Model; Fonseca and Malhotra 2010) to compute the wind wave exposure within an area of approximately 25 miles radius from Beaufort, North Carolina for estuarine waters encompassing Bogue Sound, Back Sound and Core Sound during three hurricane landfall scenarios. The wind wave heights and energy of a site was a computation based on wind speed, direction, fetch and local bathymetry. We used our local area (Beaufort, North Carolina) as a test bed for this product because it is frequently impacted by hurricanes and we had confidence in the bathymetry data. Our test bed conditions were based on two recent Hurricanes that strongly affected this area. First, we used hurricane Isabel which made landfall near Beaufort in September 2003. Two hurricane simulations were run first by passing hurricane Isabel along its actual path (east of Beaufort) and second by passing the same storm to the west of Beaufort to show the potential effect of the reversed wind field. We then simulated impacts by a hurricane (Ophelia) with a different landfall track, which occurred in September of 2005. The simulations produced a geographic description of wave heights revealing the changing wind and wave exposure of the region as a consequence of landfall location and storm intensity. This highly conservative simulation (water levels were that of low tide) revealed that many inhabited and developed shorelines would receive wind waves for prolonged periods of time at heights far above that found during even the top few percent of non-hurricane events. The simulations also provided a sense for how rapidly conditions could transition from moderate to highly threatening; wave heights were shown to far exceed normal conditions often long before the main body of the storm arrived and importantly, at many locations that could impede and endanger late-fleeing vessels seeking safe harbor. When joined with other factors, such as storm surge and event duration, we anticipate that the WEMo forecasting tool will have significant use by local emergency agencies and the public to anticipate the relative exposure of their property arising as a function of storm location and may also be used by resource managers to examine the effects of storms in a quantitative fashion on local living marine resources.
Resumo:
Investigators at the Cooperative Oxford Laboratory (COL) diagnose and study crustaceans, mollusks, finfish, and a variety of other marine and estuarine invertebrates to assess animal health. This edition updates the Histological Techniques for Marine Bivalve Mollusks manual by Howard and Smith (1983) with additional chapters on molluscan and crustacean techniques. The new edition is intended to serve as a guide for histological processing of shellfish, principally bivalve mollusks and crustaceans. Basically, the techniques included are applicable for histopathological preparation of all marine animals, recognizing however that initial necropsy is unique to each species. Photographs and illustrations are provided for instruction on necropsy of different species to simplify the processing of tissues. Several of the procedures described are adaptations developed by the COL staff. They represent techniques based on principles established for the histopathologic study of mammalian and other vertebrate tissues, but modified for marine and aquatic invertebrates. Although the manual attempts to provide adequate information on techniques, it is also intended to serve as a useful reference source to those interested in the pathology of marine animals. General references and recommended reading listed in the back of the manual will provide histological information on species not addressed in the text.
Resumo:
Recruitment of bay anchovy (Anchoa mitchilli) in Chesapeake is related to variability in hydrological conditions and to abundance and spatial distribution of spawning stock biomass (SSB). Midwater-trawl surveys conducted for six years, over the entire 320-km length of the bay, provided information on anchovy SSB, annual spatial patterns of recruitment, and their relationships to variability in the estuarine environment. SSB of anchovy varied sixfold in 1995–2000; it alone explained little variability in young-of-the-year (YOY) recruitment level in October, which varied ninefold. Recruitments were low in 1995 and 1996 (47 and 31 Z 109) but higher in 1997–2000 (100 to 265 Z 109). During the recruitment process the YOY population migrated upbay before a subsequent fall-winter downbay migration. The extent of the downbay migration by maturing recruits was greatest in years of high freshwater input to the bay. Mean dissolved oxygen (DO) was more important than freshwater input in controlling distribution of SSB and shifts in SSB location between April– May (prespawning) and June–August (spawning) periods. Recruitments of bay anchovy were higher when mean DO was lowest in the downbay region during the spawning season. It is hypothesized that anchovy recruitment level is inversely related to mean DO concentration because low DO is associated with high plankton productivity in Chesapeake Bay. Additionally, low DO conditions may confine most bay anchovy spawners to the downbay region, where production of larvae and juveniles is enhanced. A modified Ricker stock-recruitment model indicated density-compensatory recruitment with respect to SSB and demonstrated the importance of spring-summer DO levels and spatial distribution of SSB as controllers of bay anchovy recruitment.
Resumo:
The increase in harbor seal (Phoca vitulina richardsi) abundance, concurrent with the decrease in salmonid (Oncorhynchus spp.) and other fish stocks, raises concerns about the potential negative impact of seals on fish populations. Although harbor seals are found in rivers and estuaries, their presence is not necessarily indicative of exclusive or predominant feeding in these systems. We examined the diet of harbor seals in the Umpqua River, Oregon, during 1997 and 1998 to indirectly assess whether or not they were feeding in the river. Fish otoliths and other skeletal structures were recovered from 651 scats and used to identify seal prey. The use of all diagnostic prey structures, rather than just otoliths, increased our estimates of the number of taxa, the minimum number of individuals and percent frequency of occurrence (%FO) of prey consumed. The %FO indicated that the most common prey were pleuronectids, Pacific hake (Merluccius productus), Pacific stag-horn sculpin (Leptocottus armatus), osmerids, and shiner surfperch (Cymatogaster aggregata). The majority (76%) of prey were fish that inhabit marine waters exclusively and fish found in marine and estuarine areas (e.g. anadromous spp.) which would indicate that seals forage predominantly at sea and use the estuary for resting and opportunistic feeding. Salmonid remains were encountered in 39 samples (6%); two samples contained identifiable otoliths, which were determined to be from chi-nook salmon (O. tshawytscha). Because of the complex salmonid composition in the Umpqua River, we used molecular genetic techniques on salmonid bones retrieved from scat to discern species that were rare from those that were abundant. Of the 37 scats with salmonid bones but no otoliths, bones were identified genetically as chinook or coho (O. kisutch) salmon, or steelhead trout (O. mykiss) in 90% of the samples.
Resumo:
The reproductive biology of the whitemouth croaker (Micropogonias furnieri) inhabiting the estuarine waters of the Río de la Plata (Argentina-Uruguay) was studied by using histological analysis of the ovaries. Samples were collected during the spawning peak and the end of two breeding seasons (November 1995–Feb-ruary 1996 and November 1997–March 1998). Micropogonias furnieri is a multiple spawner with indeterminate annual fecundity. Spawning frequency, determined by using the percentage of females with postovulatory follicles, was about 31% in November 1995 and 25% in February 1996. At these frequencies, a female on average spawned a new batch of eggs every 3–4 days during the spawning season. Batch fecundity was fitted to a power function of length and a linear function of ovary-free female weight. The number of hydrated oocytes decreased at the end of the breeding season, coinciding with an increase of atresia. Annual egg production for a 40-cm-TL female was estimated to be between 3,300,000 and 7,300,000 eggs. In addition to the seasonal decrease in fecundity and spawning activity, a decline in egg size and weight toward the end of the breeding season was also observed.
Resumo:
Growth, recruitment, and abundance of young-of-the-year (YOY) striped mullet (Mugil cephalus L.) in estuarine habitats in South Carolina from 1998 to 2000 were examined and compared to historical data (1986–91) of growth, recruitment, and abundance. Daily growth increments from the sagittal otoliths of juvenile striped mullet were validated by using fish immersed in oxytetracycline hydrochloride (OTC) for five hours from the Charleston Harbor Estuary system. The distribution of back-calculated birthdates indicated that striped mullet spawn from October to late April and estuarine recruitment occurs from January through May. Juveniles were more abundant in mesohaline and polyhaline salinity regimes but were found throughout the estuary. Juvenile growth after recruitment into the estuary can be described by the relationship Total length (mm) = 0.341 (Age)1.04 (r2=0.741, P=0.001). Growth of juveniles according to the analysis of size-frequency data from historical surveys (1986 to 1991) in the same estuaries gave the relationship Total length (mm) = 8.77 (month)1.12 (r2=0.950, P=0.001). The similarity in the growth curves for both groups of fish suggests that juvenile striped mullet in South Carolina have consistent annual growth during the first year of life.
Resumo:
Distribution, abundance, and several population features were studied in Ensenada de La Vela (Venezuela) between 1993 and 1998 as a first step in the assessment of local fisheries of swimming crabs. Arenaeus cribrarius was the most abundant species at the marine foreshore. Callinectes danae prevailed at the estuarine location. Callinectes bocourti was the most abundant species at the offshore. Abundances of A. cribrarius and C. danae fluctuated widely and randomly. Ovigerous females were almost absent. Adults of several species were smaller than previously reported. This study suggests that fisheries based on these swimming crabs probably will be restricted to an artisanal level because abundances appear too low to support industrial exploitation.