301 resultados para 260600 Atmospheric Sciences
Resumo:
In 1984, a workshop was held on "Climatic variability of the eastern North Pacific and western North America". From it has emerged an annual series of workshops held each spring at the Asilomar Conference Center, Monterey Peninsula, California. These annual gatherings have come to be called PACLIM (Pacific Climate) Workshops, reflecting broad interests in the climatologies associated with the Pacific Ocean.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): General circulation models (GCMs) are probably the most sophisticated theoretical tools we have to simulate possible climatic effects of increasing carbon dioxide and other greenhouse gases. ... As will be illustrated here using a variety of examples, although the models do simulate "reality" very well on the "grand" scale (e.g., global, hemispheric, zonal), substantial differences are more apparent as the scale is reduced to areas particularly relevant to regional planners. It is particularly important that workers more clearly recognize the potential dangers in relying too heavily on simple summary statistics such as averages estimated over large regional scales. Many shortcomings are apparent in the model simulations of the present climate, indicating that further model improvements are needed to achieve reliable regional and seasonal projections of the future climatic conditions.
Resumo:
For the last two decades most general circulation models (GCMs) have included some kind of surface hydrology submodel. The content of these submodels is becoming increasingly complex and realistic. It is still easy to identify defects in present treatments. Yet, to improve our ability to model the contribution of land hydrology to climate and climate change, we must be concerned not with just the surface hydrology submodel per se, but also with how it works in the overall context of the GCM.
Resumo:
This report is a contribution to an assessment of the current status of agriculture in Cambodia, focusing on the linkages between agriculture and water, mainly in the form of irrigation. It seeks to view current government policies on agriculture and irrigation in the context of experiences on the ground, as communicated through the many field studies that cover varied aspects of performance in the agriculture sector and irrigation schemes. In an effort to identify future research areas, this review examines the status quo, and connects or disconnects with stated policy through a broad lens to capture strengths and challenges across crop production, irrigation management and post-harvest contexts. It places irrigation under scrutiny in terms of its value as a major area of government expenditure in recent years, and asks whether it presents the best potential for future gains in productivity, when compared with the prospects offered by investments in other aspects of agriculture. The fieldwork and review of current literature that form the basis of this report were undertaken at the request of, and partly funded by, the Australian Centre for International Agricultural Research (ACIAR). It is also intended to contribute knowledge to the CGIAR Research Program on Aquatic Agricultural Systems (AAS) led by WorldFish, who co-funded the activities.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Current projections of the response of the biosphere to global climatic change indicate as much as 50 to 90% spatial displacement of extratropical biomes. The mechanism of spatial shift could be dominated either by competitive displacement of northern biomes by southern biomes or by drought-induced dieback of areas susceptible to change. The current suite of global biosphere models cannot distinguish between these two processes, hence the need for a mechanistically based biome model. The first steps have been taken toward development of a rule-based, mechanistic model of regional biomes at a continental scale. ... The model is in an early stage of development and will require several enhancements, including: explicit simulation of potential evapotranspiration, extension to boreal and tropical biomes, a shift from steady-state to transient dynamics, and validation on other continents.
Resumo:
We have performed GCM experiments using the National Meteorological Center's Medium Range Forecasting (MRF) model to study the skill of monthly forecasts during the Northern Hemisphere summer and to test the impact of sea surface temperature anomalies (SSTAs) on such forecasts. The daily skill varies a great deal. The skillful daily forecasts last from 5 to 8 days for the Southern Hemisphere and from 6 to 8 days for the Northern Hemisphere. SSTAs have positive impact on the forecasts in the tropics and surface variables, but the impact of tropical SSTAs on the extra-tropical circulation is, in general, positive but small. Overall, the initial conditions play a more important role than SSTAs in determining the forecast skill.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): This paper examines the influence of wind climate variations on new Pacific Northwest renewable energy sources. Wind represents a potentially valuable supplemental source of energy in the region. ... The recent period of weaker winds may be associated with a stronger North Pacific Low in the last decade. This would result in winter storms more often being deflected farther north, to Canada. Also, in the last dozen years, lower SOI values were common. Other investigators have found low SOI to be associated with drier conditions in the Pacific Northwest.
Resumo:
Crater Lake has fluctuated in elevation by 5 meters during the 20th Century. Reasons for these fluctuations were investigated as part of a long-term study of the Crater Lake ecosystem. Lake level changes were found to be closely related to precipitation variations. The lake can be thought of as acting as both a giant precipitation gage and as a large evaporation "pan". Winter snowfall variations are related to variations in the Southern Oscillation Index. Crater Lake offers a unique combination of simple geometry and hydrology, and a long record of supporting data, available nowhere else in the world for a caldera lake.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): There is considerable seasonal-to-interannual variability in the runoff of major watersheds in the Sierra Nevada, Coastal, and Cascade ranges of California and southwestern Oregon. This variability is reflected in both the amount and timing of runoff. This study examines that variability using long historical streamflow records and seasonal mean temperature and precipitation. ... Precipitation is the only significant predictor for both amount and timing of runoff in the low elevation basins. As elevation increases, the models rely more and more on temperature to explain amount and timing of runoff.
Resumo:
Precipitation is a difficult variable to understand and predict. In this study, monthly precipitation in California is divided into two classes according to the monthly temperature to better diagnose the atmospheric circulation that causes precipitation, and to illustrate how temperature compounds the precipitation to runoff process.
Resumo:
"Greenhouse heating" of the atmosphere due to trace gases seems apparent to those who model with averages but not to those who examine individual temperature records. Temperature trends are on the minds of all those concerned with the environmental influence of the increasing human population. The big problem remains - where and how do we take the Earth's temperature? ... In California, there are 112 temperature records for 1910 to 1989; all of them were used here to examine trends in annual temperature.
Resumo:
This paper is an examination of precipitation trends in California for 100 years based on 96 rain records. The study resulted from an attempt to develop a wetness index for the San Francisco Bay area, where declining rainfall trends indicated a lot more rainfall in the first 50 years of the study period. A regular pattern of decline was found in California coastal stations, concurrent with an increasing trend at inland stations.
Resumo:
The National Oceanic and Atmospheric Administration Center for Ocean Analysis and Prediction (COAP) in Monterey, California, has assembled information to suggest how NOAA's facilities for observing the ocean and atmosphere might be applied to studies of paleoclimate. This effort resulted, indirectly, in several projects that combine direct observations of the ocean/atmosphere system with studies of past climate of the Pacific region. This article considers concepts that link the two kinds of investigations. It defines the thesis that direct observation of systems that generate paleoclimatic information is the nexus upon which understanding of climatic variability begins and upon which prediction of climate and global change depends.
Resumo:
Climatic and environmental records from low, middle, and high latitude ice cores greatly increase our knowledge of the course of past events. This historical perspective is essential to predict climatic oscillations, dominated as they may be by increasing greenhouse gas concentrations. Forcing factors, internal and external, that have operated in the past will continue to influence the course of events.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Several snow accumulation time series derived from ice cores and extending over 3 to 5 centuries are examined for spatial and temporal climatic information. ... A significant observation is the widespread depression of net snow accumulation during the latter part of the "Little Ice Age". This initially suggests sea surface temperatures were significantly depressed during the same period. However, prior to this, the available core records indicate generally higher than average precipitation rates. This also implies that influences such as shifted storm tracks or a dustier atmosphere may have been involved. Without additional spatial data coverage, these observations should properly be studied using a coupled (global) ocean/atmosphere GCM.