511 resultados para coastal resources


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time in its history, the International Symposium on Sea Turtle Biology and Conservation migrated to a site outside of the United States. Thus the Eighteenth edition was hosted by the Mazatlán Research Unit of the Instituto de Ciencias del Mar y Limnología of the Mexican National Autonomous University (UNAM) in Mazatlán, Sinaloa (Mexico) where it was held from 3-7, March, 1998. Above all, our symposium is prominent for its dynamism and enthusiasm in bringing together specialists from the world´s sea turtle populations. In an effort to extend this philosophy, and fully aware of how fast the interest in sea turtles has grown, the organizers paid special attention to bring together as many people as possible. With the tremendous efforts of the Travel Committee and coupled with a special interest by the Latin American region´s devotees, we managed to get 653 participants from 43 countries. The number of presentations increased significantly too, reaching a total of 265 papers, ranging from cutting-edge scientific reports based on highly sophisticated methods, to the experiences and successes of community-based and environmental education programs. A priority given by this symposium was the support and encouragement for the construction of "bridges" across cultural and discipline barriers. We found success in achieving a multinational dialogue among interest groups- scientists, resource managers, decision makers, ngo's, private industry. There was a broad representation of the broad interests that stretch across these sectors, yet everyone was able to listen and offer their own best contribution towards the central theme of the Symposium: the conservation of sea turtles and the diversity of marine and coastal environments in which they develop through their complicated and protracted life cycle. Our multidisciplinary approach is highly important at the present, finding ourselves at a cross roads of significant initiatives in the international arena of environmental law, where the conservation of sea turtles has a key role to play. Many, many people worked hard over the previous 12 months, to make the symposium a success. Our sincerest thanks to all of them: Program committee: Laura Sarti (chair), Ana Barragán, Rod Mast, Heather Kalb, Jim Spotilla, Richard Reina, Sheryan Epperly, Anna Bass, Steve Morreale, Milani Chaloupka, Robert Van Dam, Lew Ehrhart, J. Nichols, David Godfrey, Larry Herbst, René Márquez, Jack Musick, Peter Dutton, Patricia Huerta, Arturo Juárez, Debora Garcia, Carlos Suárez, German Ramírez, Raquel Briseño, Alberto Abreu; Registration and Secretary: Jane Provancha (chair), Lupita Polanco; Informatics: Germán Ramírez, Carlos Suárez; Cover art: Blas Nayar; Designs: Germán Ramírez, Raquel Briseño, Alberto Abreu. Auction: Rod Mast; Workshops and special meetings: Selina Heppell; Student prizes: Anders Rhodin; Resolutions committee: Juan Carlos Cantú; Local organizing committee: Raquel Briseño, Jane Abreu; Posters: Daniel Ríos and Jeffrey Semminoff; Travel committee: Karen Eckert (chair), Marydele Donnelly, Brendan Godley, Annette Broderick, Jack Frazier; Student travel: Francisco Silva and J. Nichols; Vendors: Tom McFarland and J. Nichols; Volunteer coordination: Richard Byles; Latin American Reunión: Angeles Cruz Morelos; Nominations committee: Randall Arauz, Colleen Coogan, Laura Sarti, Donna Shaver, Frank Paladino. Once again, Ed Drane worked his usual magic with the Treasury of the Symposium Significant financial contributions were generously provided by government agencies. SEMARNAP (Mexico´s Ministry of Environment, Natural Resources and Fisheries) through its central office, the Mazatlán Regional Fisheries Research Center (CRIP-Mazatlán) and the National Center for Education and Capacity Building for Sustainable Development (CECADESU) contributed to the logistics and covered the costs of auditoria and audiovisual equipment for the Symposium, teachers and their hotels for the Community Development and Environmental Education workshop in the 5th Latin American Sea Turtle Specialists; DIF (Dept of Family Affairs) provided free accomodation and food for the more than 100 participants in the Latin American Reunion. In this Reunion, the British Council-Mexico sponsored the workshop on the Project Cycle. The National Chamber of the Fisheries Industry (CANAINPES) kindly sponsored the Symposium´s coffee breaks. Personnel from the local Navy (Octave Zona Naval) provided invaluable aid in transport and logistics. The Scientific Coordination Office from UNAM (CICUNAM) and the Latin American Biology Network (RELAB) also provided funding. Our most sincere recognition to all of them. In the name of this Symposium´s compilers, I would like to also express our gratitude to Wayne Witzell, Technical Editor for his guidance and insights and to Jack Frazier for his help in translating and correcting the English of contributions from some non-native English speakers. Many thanks to Angel Fiscal and Tere Martin who helped with the typing in the last, last corrections and editions for these Proceedings. To all, from around the world, who generously helped make the 18th Symposium a huge success, shared their experiences and listened to ours, our deepest gratitude! (PDF contains 316 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several long-term monitoring studies describing the water quality and biological condition of Southeastern estuaries (National Estuarine Eutrophication Assessment Project, South Carolina Estuarine and Coastal Assessment Program (SCECAP), Environmental Monitoring and Assessment Program (EMAP), South Carolina Harmful Algal Bloom Program (SCHAB), South Carolina Tidal Creek Project, and others) have been developed. Many of the same water quality issues determined for open estuaries are also found in coastal stormwater ponds, and there are important interactions between the man-made ponds and the natural systems. Researchers have highlighted problems such as nutrient eutrophication, bacterial and chemical contamination, hypoxia, and harmful algal blooms (HABs). This technical memorandum summarizes the state-of-the-knowledge of water quality indicators (dissolved oxygen, nutrients, and chlorophyll a), and harmful algae in Southeastern coastal stormwater ponds. (PDF contains 31 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1999, NOAA’s Biogeography Branch of the Center for Coastal Monitoring and Assessment (CCMA-BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around northeastern St. Croix, U.S. Virgin Islands. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance, and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort in northeastern St. Croix was conducted through partnerships with the National Park Service (NPS) and the Virgin Islands Department of Planning and Natural Resources (VI-DPNR). The geographical focal point of the research is Buck Island Reef National Monument (BIRNM), a protected area originally established in 1961 and greatly expanded in 2001; however, the work also encompassed a large portion of the recently created St. Croix East End Marine Park (EEMP). Project funding is primarily provided by NOAA CRCP, CCMA and NPS. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem around northeastern St. Croix have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a series of hurricanes beginning with Hurricane Hugo in 1989, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem and a dramatic change in management strategy in 2003 when the park’s Interim Regulations (Presidential Proclamation No. 7392) established BIRNM as one of the first fully protected marine areas in NPS system, it became critical to identify existing marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first six years of fish survey data (2001-2006) and associated characterization of the benthos (1999-2006). The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure inside (protected) versus outside (fished) areas of BIRNM. (PDF contains 100 pages).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the spring of 2001, NOAA’s National Marine Sanctuary Program (NMSP) and National Centers for Coastal Ocean Science (NCCOS), in consultation with the National Marine Fisheries Service (NMFS), launched a 24-month effort to define and assess biogeographic patterns of selected marine species found within and adjacent to the boundaries of three west coast National Marine Sanctuaries. These sanctuaries, Monterey Bay, Gulf of the Farallones, and Cordell Bank are conducting a joint review process to update sanctuary management plans. The management plans for these sanctuaries have not been updated for over ten years and the status of the natural resources and their management issues in and around the sanctuaries may have changed. In addition, significant accomplishments in research and resource assessments have been made within the region. Thus, it is important to incorporate new and expanding knowledge into the revised management plans for these Sanctuaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three of California’s four National Marine Sanctuaries, Cordell Bank, Gulf of the Farallones, and Monterey Bay, are currently undergoing a comprehensive management plan review. As part of this review, NOAA’s National Marine Sanctuary Program (NMSP) has collaborated with NOAA’s National Centers for Coastal Ocean Science (NCCOS) to conduct a biogeographic assessment of selected marine resources using geographic information system (GIS) technology. This report complements the analyses conducted for this effort by providing an overview of the physical and biological characteristics of the region. Key ecosystems and species occurring in estuarine and marine waters are highlighted and linkages between them discussed. In addition, this report describes biogeographic processes operating to affect species’ distributional patterns. The biogeographic analyses build upon this background to further understanding of the biogeography of this region. (PDF contaons 172 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This cruise report is a summary of a field survey conducted in coastal-ocean waters off Florida from Anclote Key to West Palm Beach and from approximately 1 nautical mile (nm) offshore seaward to the shelf break (100 m). The survey was conducted May 15 - May 28, 2007 on NOAA Ship NANCY FOSTER Cruise NF-07-08-NCCOS. Multiple indicators of ecological condition were sampled synoptically at each of 50 stations throughout the region including 10 stations within the Florida Keys National Marine Sanctuary (FKNMS) using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, pH, sediment grain size, and organic carbon content. The overall purpose of the survey was to collect data to assess the status of ecological condition in coastal-ocean waters of the region, based on these various indicators, and to provide this information as a baseline for determining how environmental conditions may be changing with time. The results will be of value in helping to broaden our understanding of the status of ecological resources and their controlling factors, including impacts of potential ecosystem stressors, in such strategic coastal areas. (PDF contains 34 pages

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This cruise report is a summary of a field survey conducted in coastal-ocean waters of the Mid-Atlantic Bight from Nags Head, North Carolina to Cape Cod, Massachusetts and from approximately 1 nautical mile (nm) of shore seaward to the shelf break (100 m). The survey was conducted May 12 - May 21, 2006 on NOAA Ship NANCY FOSTER Cruise NF-06-06-NCCOS. Multiple indicators of ecological condition were sampled synoptically at each of 49 stations throughout the region using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, pH, sediment grain size, and organic carbon content. The overall purpose of the survey was to collect data to assess the status of ecological condition in coastal-ocean waters of the region, based on these various indicators, and to provide this information as a baseline for determining how environmental conditions may be changing with time. The results will be of value in helping to broaden our understanding of the status of ecological resources and their controlling factors, including impacts of potential ecosystem stressors, in such strategic coastal areas. (18pp.) (PDF contains 24 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of an ongoing program of benthic sampling and related assessments of sediment quality at Gray’s Reef National Marine Sanctuary (GRNMS) off the coast of Georgia, a survey of soft-bottom benthic habitats was conducted in spring 2005 to characterize condition of macroinfaunal assemblages and levels of chemical contaminants in sediments and biota relative to a baseline survey carried out in spring 2000. Distribution and abundance of macrobenthos were related foremost to sediment type (median particle size, % gravel), which in turn varied according to bottom-habitat mesoscale features (e.g., association with live bottom versus flat or rippled sand areas). Overall abundance and diversity of soft-bottom benthic communities were similar between the two years, though dominance patterns and relative abundances of component species were less repeatable. Seasonal summer pulses of a few taxa (e.g., the bivalve Ervilia sp. A) observed in 2000 were not observed in 2005. Concentrations of chemical contaminants in sediments and biota, though detectable in both years, were consistently at low, background levels and no exceedances of sediment probable bioeffect levels or FDA action levels for edible fish or shellfish were observed. Near-bottom dissolved oxygen levels and organic-matter content of sediments also have remained within normal ranges. Highly diverse benthic assemblages were found in both years, supporting the premise that GRNMS serves as an important reservoir of marine biodiversity. A total of 353 taxa (219 identified to species) were collected during the spring 2005 survey. Cumulatively, 588 taxa (371 identified to species) have been recorded in the sanctuary from surveys in 2000, 2001, 2002, and 2005. Species Accumulation Curves indicate that the theoretical maximum should be in excess of 600 species. Results of this study will be of value in advancing strategic science and management goals for GRNMS, including characterization and long-term monitoring of sanctuary resources and processes, as well as supporting evolving interests in ecosystem-based management of the surrounding South Atlantic Bight (SAB) ecosystem. (PDF contains 46 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: The offshore shelf and canyon habitats of the OCNMS (Fig. 1) are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary. To begin addressing this issue, an initial pilot survey was conducted June 1-12, 2004 at six sites in offshore waters of the OCNMS (Fig. 2, average depths of 147-265 m) to explore for the presence of deep-sea coral/sponge assemblages and to look for evidence of potential anthropogenic impacts in these critical habitats. The survey was conducted on the NOAA Ship McARTHUR-II using the Navy’s Phantom DHD2+2 remotely operated vehicle (ROV), which was equipped with a video camera, lasers, and a manipulator arm for the collection of voucher specimens. At each site, a 0.1-m2 grab sampler also was used to collect samples of sediments for the analysis of macroinfauna (> 1.0 mm), total organic carbon (TOC), grain size, and chemical contaminants. Vertical profiles of salinity, dissolved oxygen (DO), temperature, and pressure were recorded at each site with a small SeaCat conductivity-temperature-depth (CTD) profiler. Niskin bottles attached to the CTD also obtained near-bottom water samples in support of a companion study of microbial indicators of coral health and general ecological condition across these sites. All samples except the sediment-contaminant samples are being analyzed with present project funds. Original cruise plans included a total of 12 candidate stations to investigate (Fig. 3). However, inclement weather and equipment failures restricted the sampling to half of these sites. In spite of the limited sampling, the work completed was sufficient to address key project objectives and included several significant scientific observations. Foremost, the cruise was successful in demonstrating the presence of target deepwater coral species in these waters. Patches of the rare stony coral Lophelia pertusa, more characteristic of deepwater coral/sponge assemblages in the North Atlantic, were observed for the first time in OCNMS at a site in 271 meters of water. A large proportion of these corals consisted of dead and broken skeletal remains, and a broken gorgonian (soft coral) also was observed nearby. The source of these disturbances is not known. However, observations from several sites included evidence of bottom trawl marks in the sediment and derelict fishing gear (long lines). Preliminary results also support the view that these areas are important reservoirs of marine biodiversity and of value as habitat for demersal fishes. For example, onboard examination of 18 bottom-sediment grabs revealed benthic infaunal species representative of 14 different invertebrate phyla. Twenty-eight species of fishes from 11 families, including 11 (possibly 12) species of ommercially important rockfishes, also were identified from ROV video footage. These initial discoveries have sparked considerable interests in follow-up studies to learn more about the spatial extent of these assemblages and magnitude of potential impacts from commercial-fishing and other anthropogenic activities in the area. It is essential to expand our knowledge of these deep-sea communities and their vulnerability to potential environmental risks in order to determine the most appropriate management strategies. The survey was conducted under a partnership between NOAA’s National Centers for Coastal Ocean Science (NCCOS) and National Marine Sanctuary Program (NMSP) and included scientists from NCCOS, OCNMS, and several other west-coast State, academic, private, and tribal research institutions (see Section 4 for a complete listing of participating scientists). (PDF contains 20 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forward: Looe Key National Marine Sanctuary (LKNMS) was designated in 1981 to protect and promote the study, teaching, and wise use of the resources of Looe Key Sanctuary (Plate A). In order to wisely manage this valuable resource, a quantitative resource inventory was funded by the Sanctuary Programs Division (SPD), Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration (NOAA) in cooperation with the Southeast Fisheries Center, National Marine Fisheries Service, NOAA; the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), University of Miami; the Fisher Island Laboratory, United States Geological Survey; and the St. Petersburg Laboratory, State of Florida Department of Natural Resources. This report is the result of this cooperative effort. The objective of this study was to quantitatively inventory selected resources of LKNMS in order to allow future monitoring of changes in the Sanctuary as a result of human or natural processes. This study, referred to as Phase I, gives a brief summary of past and present uses of the Sanctuary (Chapter 2); and describes general habitat types (Chapter 3), geology and sediment distribution (Chapter 4), coral abundance and distribution (Chapter 5), the growth history of the coral Montastraea annularis (Chapter 6), reef fish abundance and distribution (Chapter 7), and status of selected resources (Chapter 8). An interpretation of the results of the survey are provided for management consideration (Chapter 9). The results are expected to provide fundamental information for applied management, natural history interpretation, and scientific research. Numerous photographs and illustrations were used to supplement the report to make the material presented easier to comprehend (Plate B). We anticipate the information provided will be used by managers, naturalists, and the general public in addition to scientists. Unless otherwise indicated, all photographs were taken at Looe Key Reef by Dr. James A. Bohnsack. The top photograph in Plate 7.8 was taken by Michael C. Schmale. Illustrations were done by Jack Javech, NMFS. Field work was initiated in May 1983 and completed for the most part by October 1983 thanks to the cooperation of numerous people and organizations. In addition to the participating agencies and organizations we thank the Newfound Harbor Marine Institute and the Division of Parks and Recreation, State of Florida Department of Natural Resources for their logistical support. Special thanks goes to Billy Causey, the Sanctuary Manager, for his help, information, and comments. We thank in alphabetical order: Scott Bannerot, Margie Bastian, Bill Becker, Barbara Bohnsack, Grant Beardsley, John Halas, Raymond Hixon, Irene Hooper, Eric Lindblad, and Mike Schmale. We dedicate this effort to the memory of Ray Hixon who participated in the study and who loved Looe Key. (PDF contains 43 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Between 1994 and 1997, 258 tissue and 178 sediment samples were analyzed for chlorpyrifos throughout the coastal United States and the Great Lakes. Subsequently, 95 of the 1997 tissue samples were reanalyzed for endosulfan. Tissue chlorpyrifos concentrations, which exceeded the 90th percentile, were found in coastal regions known to have high agricultural use rates but also strongly correlated with sites near high population. The highest concentrations of endosulfans in contrast, were generally limited to agricultural regions of the country. Detections of chlorpyrifos at several Alaskan sites suggest an atmospheric transport mechanism. Many Great Lakes sites had chlorpyrifos tissue concentrations above the 90th percentile which decreased with increasing distance from the Corn Belt region (Iowa, Indiana, Illinois, and Wisconsin) where most agriculturally applied chlorpyrifos is used. Correlation analysis suggests that fluvial discharge is the primary transport pathway on the Atlantic and Gulf of Mexico coasts for chlorpyrifos but not necessarily for endosulfans. (PDF contains 28 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objectives of this report, which is based on the current literature and key informant interviews, is to assess and analyse the nature and distribution of poverty and aquatic resources use, focusing especially on the livelihoods of the poor. It describes and reports different ways of measuring poverty that are used in Cambodia and quantifies the diverse nature and geographic distribution of aquatic resources use in Cambodia. (PDF contains 55 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seagrass communities are among the richest and most productive, photoautotrophic coastal systems in the world. They protect and improve water quality, provide shoreline stabilization, and are important habitats for an array of fish, birds, and other wildlife. Hence, much can be gained by protecting and restoring these important living resources. Human’s impact on these vital resources from population growth, pollution, and physical damage from boating and other activities can disrupt the growth of these seagrasses communities and have devastating effects on their health and vitality. Inventory and monitoring are required to determine the dynamics of seagrasses and devise better protection and restoration for these rich resources. The purpose of this seagrass workshop, sponsored by NOAA’s CSC , USGS, and FMRI, was to move toward greater objectivity and accuracy in seagrass mapping and monitoring. This workshop helped foster interaction and communication among seagrass professionals. In order to begin the process of determining the best uniform mapping process for the biological research community. Increasing such awareness among the seagrass and management communities, it is hoped that an improved understanding of the monitoring and mapping process will lead to more effective and efficient preservation os submerged aquatic vegetation. (PDF contains 20 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the homes threatened by erosion and the developer illegally filling in marshlands are the projects that make the headlines, for many state regulatory programs, it’s the residential docks and piers that take up the most time. When is a dock too long? What about crossing extended property lines? And at what point does a creek have too many docks? There are no easy answers to any of the dock and pier related questions. Each state has to craft the laws and policies that are best for its natural resources and its political and legal environment. At the same time, mistakes in judgment can be costly for the organization, the homeowner, and the natural resources. At the request of the Georgia Coastal Management Program, the National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center compiled an inventory of dock information for four states—Georgia, Florida, North Carolina, and South Carolina. Federal laws, state laws and regulations, permitting policies, and contact information are included in a tabular format that is easy to use. (PDF contaions 18 pages)