249 resultados para Offshore whaling
Resumo:
In late October of 1966, an imposing ship steamed quietly through the placid waters of the Suez Canal. Clad in drab industrial gray, and flying a Soviet hammer and sickle flag at her masthead, the vessel was accompanied by a large fleet of smaller craft. Any observer able to decipher Cyrillic script could have read, in rusting metallic letters on her bow, the name Sovetskaya Ukraina. The more experienced would perhaps have identified her as a whaling factory ship, traveling with her attendant fleet of catcher boats and scouting vessels on a transit that would take them south into the Red Sea and beyond.
Resumo:
Alfred A. Berzin began to study whales in 1955 at the Pacific Research and Fisheries Center (TINRO) in Vladivostok where he is still working at the present time. In the years before the rapid development of Soviet whaling only two fleets (Aleut and Second Kuril) were hunting whales.
Resumo:
We have extracted, digitized, and analyzed information about bowhead whales, Balaena mysticetus, contained in records of whaling cruises that were undertaken in the Bering, Chukchi, and Beaufort Seas from 1849 to 1914. Our database consists of 65,000 days of observations which provide insights into whether this bowhead stock may comprise more than one population.
Resumo:
Fifty-one deepwater and other shark species of the U.S. Exclusive Economic Zone in the Atlantic Ocean and Gulf of Mexico, which currently are not included in any Federal fishery management plan, are described, with a focus on primary distribution. Many of these shark species are not well known, while others which are more common may be of particular interest. Owing to concerns regarding possible increases in fishing effort for some of these species, as well as possible increases in bycatch rates as other fisheries move farther offshore, it is important that these sharks be considered in marine ecosystem management efforts. This will necessitate a better understanding of their biology and distribution. Primary distribution maps are included, based on geographic information system (GIS) analyses of both published and unpublished data, and a review of the literature. The most recent systematic classification and nomenclature for these species is used.
Resumo:
Aerial surveys of belugas, Delphinapterus leucas, in Cook Inlet wre flown each year during June and/or July from 1993 to 2000. This project was designed to delineate distribution and collect aerial counts, elements critical to the managment of this small, isolated stock that was subjected to a persistent harvest by Native hunters. The surveys provided a thorough, annual coverage of the coastal areas of the inlet (1,300 km of shoreline) and included roughly 1,000 km of offshore transects annually. Coastal transects were flown 1.4 km from the waterline, thus surveying most of the area within 3 km of shore. These, along with offshore transects, provided annual systematic searches of 13-33% of the entire inlet. The largest concentration of belugas (151-288 whales by aerial count) was in the northern portion of upper Cook Inlet in the Susitna River Delta and/or in Knik Arm. Another concentration (17-49 whales) was consistently found between Chickaloon River and Point Possession. Smaller groups (generally <20 whales) were occasionally found in Turn-again Arm, Kachemak Bay, Redoubt Bay (Big River), and Trading Bay (McArthur River) prior to 1995 but not thereafter. Over the past three decades, summer distribution has shrunk such that sightings now only rarely occur in lower Cook Inlet and in offshore areas. In the 1990's, most (96-100%) of the sightings were concentrated in a few dense groups in shallow areas near river mouths in upper Cook Inlet.
Resumo:
Dedicated at-sea surveys for marine birds and mammals conducted in lower Cook Inlet in late July and early August from 1995–99 failed to locate any belugas, Delphinapterus leucas. Surveys covered a total of 6,249 linear km and were conducted in both nearshore and offshore habitats. Sightings included 791 individual marine mammals of 10 species. Both historical data and local knowledge indicate that belugas were regularly seen in summer in nearshore and offshore areas of lower Cook Inlet up until the early 1990’s. Diminished presence of belugas in lower Cook Inlet may be a direct function of reduced numbers but may also indicate changes in habitat quality that may inhibit recovery.
Resumo:
A review of available information describing habitat associations for belugas, Delphinapterus leucas, in Cook Inlet was undertaken to complement population assessment surveys from 1993-2000. Available data for physical, biological, and anthropogenic factors in Cook Inlet are summarized followed by a provisional description of seasonal habitat associations. To summarize habitat preferences, the beluga summer distribution pattern was used to partition Cook Inlet into three regions. In general, belugas congregate in shallow, relatively warm, low-salinity water near major river outflows in upper Cook Inlet during summer (defined as their primary habitat), where prey availability is comparatively high and predator occurrence relatively low. In winter, belugas are seen in the central inlet, but sightings are fewer in number, and whales more dispersed compared to summer. Belugas are associated with a range of ice conditions in winter, from ice-free to 60% ice-covered water. Natural catastrophic events, such as fires, earthquakes, and volcanic eruptions, have had no reported effect on beluga habitat, although such events likely affect water quality and, potentially, prey availability. Similarly, although sewage effluent and discharges from industrial and military activities along Cook Inlet negatively affect water quality, analyses of organochlorines and heavy metal burdens indicate that Cook Inlet belugas are not assimilating contaminant loads greater than any other Alaska beluga stocks. Offshore oil and gas activities and vessel traffic are high in the central inlet compared with other Alaska waters, although belugas in Cook Inlet seem habituated to these anthropogenic factors. Anthropogenic factors that have the highest potential negative impacts on belugas include subsistence hunts (not discussed in this report), noise from transportation and offshore oil and gas extraction (ship transits and aircraft overflights), and water quality degradation (from urban runoff and sewage treatment facilities). Although significant impacts from anthropogenic factors other than hunting are not yet apparent, assessment of potential impacts from human activities, especially those that may effect prey availability, are needed.
Resumo:
Belugas, Delphinapterus leucas, in Cook Inlet, Alaska, represent a unique and isolated marine mammal population that has been hunted for a variety of purposes since prehistoric times. Archeological studies have shown that both Alutiiq Eskimos and Dena'ina Atabaskan Indians have long utilized many marine resources in Cook Inlet, including belugas. Over the past century, commercial whaling and sport hunting also occurred periodically in Cook Inlet prior to the Marine Mammal Protection Act of 1972 (MMPA). During the 1990's, the hunting mortality by Alaska Natives apparently increased to 40-70 whales per year, which led to the decling of this stock and its subsequent designation in 2000 as depleted under the MMPA. Concerns about the decline of the Cook Inlet stock resulted in a voluntary suspension of the subsistenc hunt by Alaska Natives in 1999. The difficulty in obtaining accurate estimates for the harvest of these whales is due to the inability to identify all of the hunters and, in turn, the size of the harvest. Attempts to reconstruct harvest records based on hunters' recollections and interviews from only a few households have been subject to a wide degree of speculation. To adequately monitor the beluga harvest, the National Marine Fisheries Service established marking and reporting regulations in October 1999. These rules require that Alaska Natives who hunt belugas in Cook Inlet must collect the lowere left jaw from harvested whales and complete a report that includes date and time of the harvest, coloration of the whale, harvest location, and method of harvest. The MMPA was amended in 2000 to require a cooperative agreement between the National Marine Fisheries Service and Alaska Native organizations before hunting could be resumed.
Resumo:
In the history of whaling from prehistoric to modern times, the large whales, sometimes called the “great whales,” were hunted most heavily owing in part to their corresponding value in oil, meat, and baleen. Regional populations of North Atlantic right whales, Eubalaena glacialis glacialis, were already decimated by 1700, and the North Atlantic gray whale, Eschrichtius robustus, was hunted to extinction by the early 1700’s (Mitchell and Mead1).
Resumo:
California’s Monterey Bay area is an important center of recreational fishing for rockfish of various Sebastes species. The species composition of commercial passenger fishing vessel catches from 1959 to 1994 varied with changes in fishing location and depth. The shift from shallow nearshore locations to deeper offshore locations in the late 1970’s and 1980’s changed the emphasis from the blue rockfish, S. mystinus, of shallow waters to the deeper, commercially fished chilipepper, S. goodei, and bocaccio, S. paucispinis. The mean size of rockfish in the catch increased as the latter species were targeted at greater depths but then declined as stocks of older fish disappeared by the mid 1980’s. During 1960–94 the mean size of all ten leading species in the recreational catch declined. The declines ranged from 1% for canary rockfish, S. pinniger, to 27% for chilipepper. The sizes of the deeper living species declined more than those of shallower species. The low frequency of strong recruitment events and increase in fishing mortality and natural mortality appear to have contributed to the declining mean size. The scarcity of older fish, observed as a drop in mean size to below the size of maturity for 50% of females, leads to concern for future recruitment of the larger species, especially bocaccio, chilipepper, yellowtail rockfish, S. flavidus, and canary rockfish.
Resumo:
Simulations based on a yield-per-recruit model were performed to analyze the impact ofg rowth overfishing on brown shrimp, Penaeus aztecus, and to assess the effects of a closed season inshore and offshore of the Mexican States of Tamaulipas and Veracruz. Closure of both the inshore and offshore fisheries could enhance cohort yield by more than 300%. Cohon yield enhancement would be only about 60-80% if only the offshore season were closed. The closed season of 1993 gave better results as it covered a larger part of the brown shrimp peak recruitment period. Catch per unit of effort (CPUE) after closure in 1993, compared with 1994, was 2.4 times higher than the mean CPUE of the month. Total annual offshore yield increased 72% in 1993 (3,800 metric tons (t)) and 10% in 1994 (506 t) with respect to the mean annual offshore catch during the 10-year period prior to the 1993 closure. Simulation results could help identify alternatives that permit the coexistence of the inshore and offshore fisheries while maintaining high profitability of the brown shrimp fishery.
Resumo:
An observer program of the shark drift gillnet fishery off the Atlantic coast of Florida and Georgia was begun in 1993 to define the fishery and estimate bycatch including bottlenose dolphin, Tursiops truncatus, and sea turtles. Boats in the fishery were 12.2-19.8 m long. Nets used were 275-1,800 m long and 3.2-4.1 m deep. Stretched-mesh sizes used were 12.7-29.9 cm. Fishing trips were usually <18 h and occurred within 30 n.mi. of port. Fishing with an observer aboard occurred between Savannah, Ga., and Jacksonville, Fla., and off Cape Canaveral, Fla. Nets were set at least 3 n.mi. offshore. Numbers of boats in the fishery increased from 5 in 1993 to 11 in 1995, but total trips decreased from 185 in 1994 to 149 in 1995. During 1993-95, 48 observer trips were completed and 52 net sets were observed. No marine mammals were caught and two loggerhead turtles, Caretta caretta, were caught and released alive. A total of 9,270 animals (12 shark, 21 teleost, 4 ray, and 1 sea turtle species) were captured. Blacknose, Carcharhinus acronotus; Atlantic sharpnose, Rhizoprionodon terraenovae; and blacktip shark, C. limbatus), were the dominant sharks caught. King mackerel, Scomberomorus cavalIa; little tunny, Euthynnus alleteratus; and cownose ray, Rhinoptera bonasus, were the dominant bycatch species. About 8.4% of the total catch was bycatch. Of the totals, 9.4% of the sharks and 37.3% ofthe bycatch were discarded.
Resumo:
The white shark, Carcharodon carcharias, is considered rare in the Gulf of Mexico; however, recent longline captures coupled with historical landings information suggest that the species occurs seasonally (winter-spring) within this region. We examined a total of seven adult and juvenile white sharks (185-472 em total length) captured in waters off the west coast of Florida. Commercial longline fisheries were monitored for white sharks during all months (1981-94), but this species was captured only from January to April. All white sharks were captured in continental shelf waters from 37 to 222 km off the west coast of Florida when sea surface temperatures ranged from 18.7° to 21.6°C. Depths at capture locations ranged from 20 to 164 m. Fishing gear typically used in Gulf of Mexico offshore fisheries may not be effective at capturing this species, and the apparent rarity of white sharks in this area may be, in part, a function of gear bias.
Resumo:
South African (Cape) fur seals, Arctocephalus pusillus pusillus, interact with the South African trawl fisheries-offshore demersal, inshore demersal, and midwater fisheries. These interactions take thef ollowing forms: Seals take or damage netted fish, on particular vessels they become caught in the propeller, seals drown in the nets, live seals come aboard and may be killed. Except in specific cases of seals damaging particular trawler propellers, interactions result in little cost to the offshore and midwater trawl fisheries. For the inshore fishery, seals damage fish in the net at an estimated cost in excess of R69, 728 (US$18,827) per year, but this is negligible (0.3%) in terms ofthe value of the fishery. Seal mortality is mainly caused by drowning in trawl nets and ranges from 2,524 to 3,636 seals of both sexes per year. Between 312 and 567 seals are deliberately killed annually, but this most likely takes place only when caught and they enter the area below deck, where they are difficult to remove, and pose a potential threat to crew safety. Overall, seal mortality during trawling operations is negligible (0.4-0.6%) in terms of the feeding population of seals in South Africa.
Resumo:
Observers were placed at offshore sites to monitor and protect sea turtles during explosive removals of oil and gas structures in the Gulf of Mexico off Louisiana and Texas. Data collected during more than 6,500 hours of monitoring at 106 structure removals in 1992 provided information on sea turtle distribution. Eighteen individuals were observed including 10 loggerheads, 2 leatherbacks, 1 hawksbill, and 5 unidentified sea turtles. The observation rate (individuals per monitoring hour) of sea turtles was about 30 times higher during aerial surveys than during day or night suiface surveys.