174 resultados para Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve (Hawaii)
Resumo:
During the period from 2011 - 2015 with the aim of this study was to systematically review and in particular the revised classification of the Persian Gulf (and the Strait of Hormuz) and to obtain new information about the final confirmed list of fish species of Iranian waters of the Persian Gulf (and Hormuz Strait), samples of museums, surveys and sampling, and comparative study of all available sources and documentation was done. Classification systematic of sharks and batoids and bony fishes. Based on the results, the final list of approved fish of the Persian Gulf (including the Strait of Hormuz and Gulf of Oman border region) are 907 species in 157 families, of which 93 species of fish with 28 cartilaginous families (including 18 families with 60 species and 10 families with 34 species of shark and batoids); and 129 families with 814 species of bony fishes are. The presence of 11 new family with only one representative species in the area include Veliferidae, Zeidae, Sebastidae, Stomiidae, Dalatiidae, Zanclidae, Pempheridae, Lophiidae Kuhliidae, Etmoptridae and Chlorophthalmidae also recently introduced and approved. The two families based Creediidae Clinidae and their larvae samples for newly identified area. 62 families with mono-species and 25 families with more than 10 species are present including Gobiidae (53), Carangide (48), Labride (41), Blenniidae (34), Apogonidae (32) and Lutjanidae (31) of bony fishes, Carcharhinidae (26) of sharks and Dasyatidae (12) in terms of number of species of batoids most families to have their data partitioning. Also, 13 species as well as endemic species introduced the Persian Gulf and have been approved in terms of geographical expansion of the Persian Gulf are unique to the area.Two species of the family Poeciliidae and Cyprinodontidae have species of fresh water to the brackish coastal habitats have found a way;in addition to 11 types of families Carcharhinidae, Clupeidae, Chanidae, Gobidae, Mugilidae, Sparidae also as a species, with a focus on freshwater river basins in the south of the country have been found. In this study, it was found that out of 907 species have been reported from the study area, 294 species (32.4 %) to benthic habitats (Benthic habitats) and 613 species (67.6 %) in pelagic habitats (Pelagic habitats) belong. Coral reefs and rocky habitats in the range of benthic fish (129 species - 14.3 %) and reef associated fishes in the range of pelagic fishes (432 species – 47.8 %), the highest number and percentage of habitat diversity (Species habitats) have been allocated. As well as fish habitats with sea grass and algae beds in benthic habitat (17 species- 1.9 %) and pelagic - Oceanic (Open sea) in the whole pelagic fish (30 species – 3.3 %), the lowest number and percentage of habitat diversity into account. From the perspective of animal geography (Zoogeography) and habitat overlaps and similarities (Habitat overlapping) fish fauna of the Persian Gulf compared with other similar seas (tropical and subtropical, and warm temperate) in the Indian Ocean area - calm on the surface, based on the presence of certain species that the fish fauna of the Persian Gulf to the Red Sea and the Bay of Bengal (East Arabian Sea) compared to other regions in the Indian Ocean (Pacific) is closer (about 50%), and the Mediterranean (East area) and The Hawaiian Islands have the lowest overlap and similarity of habitat and species (about 10%).
Resumo:
Lionfish (Pterois volitans/miles complex) are venomous coral reef fishes from the Indian and western Pacific oceans that are now found in the western Atlantic Ocean. Adult lionfish have been observed from Miami, Florida to Cape Hatteras, North Carolina, and juvenile lionfish have been observed off North Carolina, New York, and Bermuda. The large number of adults observed and the occurrence of juveniles indicate that lionfish are established and reproducing along the southeast United States coast. Introductions of marine species occur in many ways. Ballast water discharge, a very common method of introduction for marine invertebrates, is responsible for many freshwater fish introductions. In contrast, most marine fish introductions result from intentional stocking for fishery purposes. Lionfish, however, likely were introduced via unintentional or intentional aquarium releases, and the introduction of lionfish into United States waters should lead to an assessment of the threat posed by the aquarium trade as a vector for fish introductions. Currently, no management actions are being taken to limit the effect of lionfish on the southeast United States continental shelf ecosystem. Further, only limited funds have been made available for research. Nevertheless, the extent of the introduction has been documented and a forecast of the maximum potential spread of lionfish is being developed. Under a scenario of no management actions and limited research, three predictions are made: ● With no action, the lionfish population will continue to grow along the southeast United States shelf. ● Effects on the marine ecosystem of the southeast United States will become more noticeable as the lionfish population grows. ● There will be incidents of lionfish envenomations of divers and/or fishers along the east coast of the United States. Removing lionfish from the southeast United States continental shelf ecosystem would be expensive and likely impossible. A bounty could be established that would encourage the removal of fish and provide specimens for research. However, the bounty would need to be lower than the price of fish in the aquarium trade (~$25-$50 each) to ensure that captured specimens were from the wild. Such a low bounty may not provide enough incentive for capturing lionfish in the wild. Further, such action would only increase the interaction between the public and lionfish, increasing the risk of lionfish envenomations. As the introduction of lionfish is very likely irreversible, future actions should focus on five areas. 1) The population of lionfish should be tracked. 2) Research should be conducted so that scientists can make better predictions regarding the status of the invasion and the effects on native species, ecosystem function, and ecosystem services. 3) Outreach and education efforts must be increased, both specifically toward lionfish and more generally toward the aquarium trade as a method of fish introductions. 4) Additional regulation should be considered to reduce the frequency of marine fish introduction into U.S. waters. However, the issue is more complicated than simply limiting the import of non-native species, and these complexities need to be considered simultaneously. 5) Health care providers along the east coast of the United States need to be notified that a venomous fish is now resident along the southeast United States. The introduction and spread of lionfish illustrates the difficulty inherent in managing introduced species in marine systems. Introduced species often spread via natural mechanisms after the initial introduction. Efforts to control the introduction of marine fish will fail if managers do not consider the natural dispersal of a species following an introduction. Thus, management strategies limiting marine fish introductions need to be applied over the scale of natural ecological dispersal to be effective, pointing to the need for a regional management approach defined by natural processes not by political boundaries. The introduction and success of lionfish along the east coast should change the long-held perception that marine fish invasions are a minimal threat to marine ecosystems. Research is needed to determine the effects of specific invasive fish species in specific ecosystems. More broadly, a cohesive plan is needed to manage, mitigate and minimize the effects of marine invasive fish species on ecosystems that are already compromised by other human activities. Presently, the magnitude of marine fish introductions as a stressor on marine ecosystems cannot be quantified, but can no longer be dismissed as negligible. (PDF contains 31 pages)
Resumo:
The health and continued existence of coral reef ecosystems are threatened by an increasing array of environmental and anthropogenic impacts. Coral disease is one of the prominent causes of increased mortality among reefs globally, particularly in the Caribbean. Although over 40 different coral diseases and syndromes have been reported worldwide, only a few etiological agents have been confirmed; most pathogens remain unknown and the dynamics of disease transmission, pathogenicity and mortality are not understood. Causal relationships have been documented for only a few of the coral diseases, while new syndromes continue to emerge. Extensive field observations by coral biologists have provided substantial documentation of a plethora of new pathologies, but our understanding, however, has been limited to descriptions of gross lesions with names reflecting these observations (e.g., black band, white band, dark spot). To determine etiology, we must equip coral diseases scientists with basic biomedical knowledge and specialized training in areas such as histology, cell biology and pathology. Only through combining descriptive science with mechanistic science and employing the synthesis epizootiology provides will we be able to gain insight into causation and become equipped to handle the pending crisis. One of the critical challenges faced by coral disease researchers is to establish a framework to systematically study coral pathologies drawing from the field of diagnostic medicine and pathology and using generally accepted nomenclature. This process began in April 2004, with a workshop titled Coral Disease and Health Workshop: Developing Diagnostic Criteria co-convened by the Coral Disease and Health Consortium (CDHC), a working group organized under the auspices of the U.S. Coral Reef Task Force, and the International Registry for Coral Pathology (IRCP). The workshop was hosted by the U.S. Geological Survey, National Wildlife Health Center (NWHC) in Madison, Wisconsin and was focused on gross morphology and disease signs observed in the field. A resounding recommendation from the histopathologists participating in the workshop was the urgent need to develop diagnostic criteria that are suitable to move from gross observations to morphological diagnoses based on evaluation of microscopic anatomy. (PDF contains 92 pages)
Resumo:
This report documents abundance and cover for selected elements of the benthic coral reef assemblage at the site of the 1984 grounding of the M/V Wellwood on Molasses Reef, Florida Keys. The purpose of the effort was to establish a pre-construction baseline before the installation of reef modules at the site. The installation process is intended to stabilize fractured substrates that were recently exposed by storm impacts, and to provide three-dimensional relief in order to enhance reef community recovery. It is hoped that the restoration effort will result in a biological assemblage with the character of the transition community that would exist there had the incident not occurred. To date, the assemblage has developed the character of a comparatively featureless hard ground similar in composition to hard ground areas and transition zones surrounding the grounding site. These data will allow scientists and resource managers to better track the trajectory of recovery following the installation of modules. Direct counts of scleractinian and gorgonian corals, hydrocorals of the genus Millepora, and zoanthids of the genus Palythoa were made in three areas within and around the grounding site. The site is poorly developed with respect to scleractinian colony size and cover compared to surrounding areas. Key scleractinian species necessary for the development of topographic relief in the area denuded by the grounding are not well represented in the current community. Though gorgonian cover and richness is similar in all study areas, gorgonian community recovery in the damaged area is not complete. Unlike surrounding areas, one species, Pseudopterogorgia americana, accounts for over half of all corals at the grounding site, over 80% of all gorgonians, and nearly all the coral cover. Based on these findings and other observations made in the 18 years since the grounding, recommendations are made that should be considered in the course of human intervention targeted at stabilizing and enhancing the site. (PDF contains 24 pages.)
Resumo:
The Flower Garden Banks are topographic features on the edge of the continental shelf in the northwest Gulf of Mexico. These banks are approximately 175 km southeast of Galveston, Texas at 28° north latitude and support the northernmost coral reefs on the North American continental shelf. The East and West Flower Garden Banks (EFG and WFG) and Stetson Bank, a smaller sandstone bank approximately 110 km offshore, are managed and protected as the Flower Garden Banks National Marine Sanctuary (FGBNMS). As part of a region-wide initiative to assess coral reef condition, the benthic and fish communities of the EFG and WFG were assessed using the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol. The AGRRA survey was conducted during a week-long cruise in August 1999 that was jointly sponsored by the FGBNMS and the Reef Environmental Education Foundation (REEF). A total of 25 coral transects, 132 algal quadrats, 24 fish transects, and 26 Roving Diver (REEF) surveys were conducted. These surveys revealed reefs with high coral cover, dominated by large, healthy corals, little macroalgae, and healthy fish populations. The percent live coral cover was 53.9 and 48.8 at the WFG and EFG, respectively, and the average colony diameter was 93 and 81 cm. Fish diversity was lower than most Caribbean reefs, but large abundances and size of many species reflected the low fishing pressure on the banks. The benthic and fish assemblages at the EFG and WFG were similar. Due to its near pristine conditions, the FGB data will prove to be a valuable component in the AGRRA database and its resulting scale of reef condition for the region. (PDF contains 22 pages.)
Resumo:
Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 square kilometers per year since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% per year before 1940 to 7% per year since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth.
Resumo:
The Marquesas Islands are located in the Pacific Ocean at about 9 degrees south latitude and 140 degrees west longitude (Figure 1). It has been demonstrated by tagging (Anonymous, 1980b) that skipjack tuna, Katsuwonus pelamis, which occur in the northeastern Pacific Ocean have migrated to the Hawaiian Islands and Christmas Island in the central Pacific and also to the area between the Marshall and Mariana islands in the western Pacific. The Tuamotu, Society, Pitcairn, and Gambier islands, though the first two are not as close to the principal fishing areas of the eastern Pacific Ocean as are the Marquesas Islands, and the last two are small and isolated, are of interest for the same reasons that the Marquesas Islands are of interest, and thus skipjack should be tagged in those islands for the same reason that they should be tagged in the Marquesas Islands. The organizations which participated in the Marquesas Islands tagging and other scientific activities were the Inter-American Tropical Tuna Commission (IATTC), the South Pacific Commission (SPC), the Centre National pour l'Exploitation des Oceans (CNEXO), the Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM), the Service de la Peche de la Polynesie Francaise (SPPF), and the Service de l'Economie Rural (SER).
Resumo:
Identifying the spatial and temporal patterns of larval fish supply and settlement is a key step in understanding the connectivity of meta-populations (Sale et al., 2005). Because of the potentially dispersive nature of the pelagic larval phase of most reef fishes, tracking cohorts from hatching to settlement is extremely difficult (but see Jones et al., 1999). However, for many studies it is sufficient to sample larvae immediately before settlement. Many coral reef fish species use mangrove and seagrass beds as nursery habitats (Nagelkerken et al., 2001; Mumby et al., 2004) and larvae of these species must pass over the reef crest in order to arrive at their preferred settlement habitats. The ability to sample this new cohort of larval fishes provides opportunities for researchers to explore the intricacies of the transition from larva to juvenile (Searcy and Sponaugle, 2001). Quantifying the potential settlers also provides valuable information about the spatial and temporal supply of presettlement larvae (Victor, 1986). Therefore a number of larval sampling methods were developed, one of which is the use of crest nets (Dufour and Galzin, 1993).
Resumo:
Local communities and local government units are recognized as the primary stakeholders and participants in the management of coral reef resources and the primary beneficiaries of small-scale fishing activities in the nearshore areas of the coastal zone. The issues relating to the management of the coastal zone are multi-faceted and some issues are largely intertwined with national policy and development goals. Thus, national governments have jurisdiction over these nearshore coastal resources to harmonize policies, monitor resource use and provide incentives for sustainable use. However, the natural boundaries of these reef resources, the processes that support reef ecosystems, and the local or national affiliation of the people who benefit from them may transcend the boundaries of the local and national management units. Therefore, efforts to arrest the decline in fish catch and loss of biodiversity for reefs require management interventions and assessment activities to be carried out at varying scales. In Southeast Asia, some aspects of reef and reef resources management — particularly in deciding the allocation of catch among competing fisheries, development of sustainable harvest strategies, use of broodstock for restocking or stock enhancement programs, protection of nursery and spawning areas, designation of systems of marine protected areas, and the identification of representative, adequate and comprehensive areas for biodiversity conservation in the region — may require the definition of larger management units. At the regional level, multi-country initiatives will need to define units for the transboundary management of resources. The use of large marine ecosystems (LMEs) to identify and manage fisheries resources may be a starting point; however, given the relatively sedentary nature of coral reef-dwelling and reef-associated organisms compared with other pelagic and demersal species, meso-scale transboundary units within the LMEs have to be defined. This paper provides suggestions for transboundary management units for coral reef and reef-associated resources in Southeast Asia based on information from genetic structures of model organisms in the region. In addition, specific reef areas are identified, which may be important beyond their national boundaries, as potential sources of recruits.
Resumo:
Growth parameters and mortality rates were estimated from length-frequency data sampled in 1982, using the FiSAT software, for three coral reef fish species, the surgeon fish (Ctenochaetus striatus), the damselfish (Stegastes nigricans) and the squirrel fish (Sargocentron microstoma) in Tiahura Reef, Moorea Island, French Polynesia.
Resumo:
An examination is made of the effects of the eruption of Mount Pinatubo on Luzon Island, northwestern Philippines in June 1991 on the Country's fisheries, considering in particular the coral reef environment, inland fisheries and aquaculture.
Resumo:
Failures of fishery management to control fishing effort globally and how this affects the coral reef fisheries are discussed. The use of marine reserves in coral reef fisheries management is also emphasized.
Resumo:
Information on reproduction in reef corals is presented. An understanding of its reproductive behaviour is an important factor in helping to preserve the coral reef ecosystems.
Resumo:
Despite considerable conservation efforts, many reef fish fisheries around the world continue to be in peril. Many are vulnerable to overexploitation because they have predictable and highly aggregated spawning events. In U.S. Caribbean waters, fishery managers are increasingly interested in advancing the use of closed areas as a means for rebuilding reef fisheries, protecting coral reef habitats, and furthering ecosystem-based management while maintaining the sustained participation of local fishing communities. This study details small-scale fishermen’s views on the Caribbean Fishery Management Council’s proposals to lengthen the current Bajo de Sico seasonal closure off the west coast of Puerto Rico to afford additional protection to snapper-grouper spawning populations and associated coral reef habitats. Drawing on snowball sampling techniques, we interviewed 65 small-scale fishermen who regularly operate in the Bajo de Sico area. Snowball sampling is a useful method to sample difficult-to-find populations. Our analysis revealed that the majority of the respondents opposed a longer seasonal closure in the Bajo de Sico area, believing that the existing 3-month closure afforded ample protection to reef fish spawning aggregations and that their gear did not impact deep-water corals in the area. Whilst fishermen’s opposition to additional regulations was anticipated, the magnitude of the socio-economic consequences described was unexpected. Fishermen estimated that a year round closure would cause their gross household income to fall between 10% and 80%, with an average drop of 48%. Our findings suggest that policy analysts and decision-makers should strive to better understand the cumulative impacts of regulations given the magnitude of the reported socio-economic impacts; and, more importantly, they should strive to enhance the existing mechanisms by which fishermen can contribute their knowledge and perspectives into the management process.