551 resultados para Marine fishes
Resumo:
Research cruises were conducted in August-October 2007 to complete the third annual remotely operated vehicle (ROV)-based assessments of nearshore rocky bottom finfish at ten sites in the northern Channel Islands. Annual surveys at the Channel Islands have been conducted since 2004 at four sites and were expanded to ten sites in 2005 to monitor potential marine protected area (MPA)effects on baseline fish density. Six of the ten sites are in MPAs and four in nearby fished reference areas. In 2007 the amount of soft-only substrate on the 141 track lines surveyed was again estimated in real-time in order to target rocky bottom habitat. These real-time estimates of hard and mixed substrate for all ten sites averaged 57%, 1% more than the post-processed average of 56%. Surveys generated 69.9 km of usable video for use in finfish density calculations, with target rocky bottom habitat accounting for 56% (39.1 km) for all sites combined. The amount of rocky habitat sampled by site averaged 3.8 km and ranged from 3.3 km sampled at South Point, a State Marine Reserve (SMR) off Santa Rosa Island, to 4.7 km at Anacapa Island SMR. A sampling goal of 75 transects at all 10 sites was met using real-time habitat estimates combined with precautionary over-sampling by 10%. A total of seventy kilometers of sampling is projected to produce at least seventy-five 100 m2 transects per site. Thirteen of 26 finfish taxa observed were selected for quantitative evaluation over the time series based on a minimum criterion of abundance (0.05/100 m2). Ten of these 13 finfish appear to be more abundant at the state marine reserves relative to fished areas when densities were averaged across the 2005 to 2007 period. One of the species that appears to be more abundant in fished areas was señorita, a relatively small prey species that is not a commercial or recreational target. (PDF contains 83 pages.)
Resumo:
The following discussion presents information on human-made reefs and their role--as one tool of many--in the management of both fisheries and habitat. Principal subjects covered in this paper include a definition of marine habitat improvement and determination of its attainment, the present applications of reef construction technology to environmental situations both generally and in three case-studies, and suggested desirable attributes for incorporation into future use of this technology. (PDF has 11 pages.)
Resumo:
(PDF contains 135 pages)
Resumo:
pdf has 37p.
Resumo:
pdf has 46p.
Resumo:
Mollusks were sorted from samples of shell hash (obtained as bycatch during NOAA-sponsored studies of larval and juvenile fish distribution), and analyzed to gain qualitative insights on species composition, distribution and habitat affinities of the molluscan fauna on the continental shelf off Georgia. Samples came from beam trawls at 37 stations located in the immediate vicinity and offshore of the Gray’s Reef National Marine Sanctuary (GRNMS) at depths of 4.9 to 103 m. Two hundred sixty-three (263) taxa of mollusks (~58% as dead shells only) were collected, and nearly all (~99%) were identified to the species level. Ninety-seven of these taxa appeared in samples from one or more of the four stations established near the corners of the GRNMS. Samples were highly variable in terms of appearance, volume and species composition of mollusks, reflecting the extreme patchiness of benthic habitats within this region of the continental shelf. With very few exceptions, the mollusks were generally characteristic of either the Carolinian or Caribbean faunal provinces. The Georgia continental shelf, however, was outside the previously reported ranges for at least 16 of the species reported here. Most of these extralimital species were known previously from the East Coast of Florida, and represented northerly range extensions of 1-5° Latitude (110-560 km). One species represented a more significant range extension from the Bahamas and the southern Caribbean, and two represented southerly range extensions, known previously from only as close as off North Carolina. The high incidence of range extensions found in this study and the potential for discovery of additional species are discussed in the context of the diversity and patchiness of benthic habitats on the continental shelf of the region, and the sensitivity of species recruitment to variability in Gulf Stream patterns and global climate change. (PDF contains 52 pages)
Resumo:
Lionfish (Pterois volitans/miles complex) are venomous coral reef fishes from the Indian and western Pacific oceans that are now found in the western Atlantic Ocean. Adult lionfish have been observed from Miami, Florida to Cape Hatteras, North Carolina, and juvenile lionfish have been observed off North Carolina, New York, and Bermuda. The large number of adults observed and the occurrence of juveniles indicate that lionfish are established and reproducing along the southeast United States coast. Introductions of marine species occur in many ways. Ballast water discharge, a very common method of introduction for marine invertebrates, is responsible for many freshwater fish introductions. In contrast, most marine fish introductions result from intentional stocking for fishery purposes. Lionfish, however, likely were introduced via unintentional or intentional aquarium releases, and the introduction of lionfish into United States waters should lead to an assessment of the threat posed by the aquarium trade as a vector for fish introductions. Currently, no management actions are being taken to limit the effect of lionfish on the southeast United States continental shelf ecosystem. Further, only limited funds have been made available for research. Nevertheless, the extent of the introduction has been documented and a forecast of the maximum potential spread of lionfish is being developed. Under a scenario of no management actions and limited research, three predictions are made: ● With no action, the lionfish population will continue to grow along the southeast United States shelf. ● Effects on the marine ecosystem of the southeast United States will become more noticeable as the lionfish population grows. ● There will be incidents of lionfish envenomations of divers and/or fishers along the east coast of the United States. Removing lionfish from the southeast United States continental shelf ecosystem would be expensive and likely impossible. A bounty could be established that would encourage the removal of fish and provide specimens for research. However, the bounty would need to be lower than the price of fish in the aquarium trade (~$25-$50 each) to ensure that captured specimens were from the wild. Such a low bounty may not provide enough incentive for capturing lionfish in the wild. Further, such action would only increase the interaction between the public and lionfish, increasing the risk of lionfish envenomations. As the introduction of lionfish is very likely irreversible, future actions should focus on five areas. 1) The population of lionfish should be tracked. 2) Research should be conducted so that scientists can make better predictions regarding the status of the invasion and the effects on native species, ecosystem function, and ecosystem services. 3) Outreach and education efforts must be increased, both specifically toward lionfish and more generally toward the aquarium trade as a method of fish introductions. 4) Additional regulation should be considered to reduce the frequency of marine fish introduction into U.S. waters. However, the issue is more complicated than simply limiting the import of non-native species, and these complexities need to be considered simultaneously. 5) Health care providers along the east coast of the United States need to be notified that a venomous fish is now resident along the southeast United States. The introduction and spread of lionfish illustrates the difficulty inherent in managing introduced species in marine systems. Introduced species often spread via natural mechanisms after the initial introduction. Efforts to control the introduction of marine fish will fail if managers do not consider the natural dispersal of a species following an introduction. Thus, management strategies limiting marine fish introductions need to be applied over the scale of natural ecological dispersal to be effective, pointing to the need for a regional management approach defined by natural processes not by political boundaries. The introduction and success of lionfish along the east coast should change the long-held perception that marine fish invasions are a minimal threat to marine ecosystems. Research is needed to determine the effects of specific invasive fish species in specific ecosystems. More broadly, a cohesive plan is needed to manage, mitigate and minimize the effects of marine invasive fish species on ecosystems that are already compromised by other human activities. Presently, the magnitude of marine fish introductions as a stressor on marine ecosystems cannot be quantified, but can no longer be dismissed as negligible. (PDF contains 31 pages)
Resumo:
For many fish stocks, resource management cannot be based on stock assessment because data are insufficient-a situation that requires alternative approaches to management. One possible approach is to manage data-limited stocks as part of an assemblage and to determine the status of the entire unit by a data-rich indicator species. The utility of this approach was evaluated in analyses of 15 years of commercial and 34 years of recreational logbook data from reef fisheries off the southeastern United States coast. Multivariate statistical analyses successfully revealed three primary assemblages. Within assemblages, however, there was little evidence of synchrony in population dynamics of member species, and thus, no support for the use of indicator species. Nonetheless, assemblages could prove useful as management units. Their identification offers opportunities for implementing management to address such ecological considerations as bycatch and species interrelations.
Resumo:
(PDF has 47 pages.)
Resumo:
On 15-16 January 2005, three offshore species of cetaceans (33 short-finned pilot whales, Globicephala macrorhynchus, one minke whale, Balaenoptera acutorostrata, and two dwarf sperm whales, Kogia sima) stranded alive on the beaches of North Carolina. The pilot whales stranded near Oregon Inlet, the minke whale in northern North Carolina, and the dwarf sperm whales near Cape Hatteras. Live strandings of three species in one weekend was unique in North Carolina and qualified as an Unusual Mortality Event. Gross necropsies were conducted on 16-17 January 2005 on 27 pilot whales, two dwarf sperm whales, and the minke whale. Samples were collected for clinical pathology, parasitology, gross pathology, histopathology, microbiology and serology. There was variation in the number of animals sampled for each collection type, however, due to carcasses washing off the beach or degradation in carcass condition during the course of the response. Comprehensive histologic examination was conducted on 16 pilot whales, both dwarf sperm whales, and the minke whale. Limited organ or only head tissue suites were obtained from nine pilot whales. Histologic examination of tissues began in February 2005 and concluded in December 2005 when final sampling was concluded. Neither the pilot whales nor dwarf sperm whales were emaciated although none had recently ingested prey in their stomachs. The minke whale was emaciated; it was likely a dependent calf that became separated from the female. Most serum biochemistry abnormalities appear to have resulted from the stranding and indicated deteriorating condition from being on land for an extended period. Three pilot whales had clinical evidence of pre-existing systemic inflammation, which was supported by histopathologic findings. Although gross and histologic lesions involving all organ systems were noted, consistent lesions were not observed across species. Verminous pterygoid sinusitis and healed fishery interactions were seen in pilot whales but neither of these changes were causes of debilitation or death. In three pilot whales and one dwarf sperm whale there was evidence of clinically significant disease in postcranial tissues which led to chronic debilitation. Cardiovascular disease was present in one pilot whale and one dwarf sperm whale; musculoskeletal disease and intra-abdominal granulomas were present in two pilot whales. These lesions were possible, but not definitive, causal factors in the stranding. Remaining lesions were incidental or post-stranding. The minke whale and three of five tested pilot whales had positive morbillivirus titers (≥1:8 with one at >1:256), but there was no histologic evidence of active viral infection. Parasites (nematodes, cestodes, and trematodes) were collected from 26 pilot whales and two dwarf sperm whales. Sites of collection included stomach, nasal/pterygoid, peribullar sinuses, blubber, and abdominal cavity. Parasite species, locations and loads were within normal limits for free-ranging cetaceans and were not considered causative for the stranding event. Gas emboli lesions which were considered consistent with or diagnostic of sonarassociated strandings of beaked whales or small cetaceans were not found in the whales stranded as part of UMESE0501Sp. Twenty-five heads were examined with nine specific anatomic locations of interest: extramandibular fat, intramandibular fat, auditory meatus, peribullar acoustic fat, peribullar soft tissue, peribullar sinus, pterygoid sinus, melon, and brain. The common finding in all examined heads was verminous pterygoid sinusitis. Intramandibular adipose tissue reddening, typically adjacent to the vascular plexus, was observed in some individuals and could represent localized hemorrhage resulting from vascular rete rupture, hypostatic congestion, or erythrocyte rupture during the freeze/thaw cycle. One cetacean had peracute to acute subdural hemorrhage that likely occurred from thrashing on the beach post-stranding, although its occurrence prior to stranding cannot be excluded. Information provided to NMFS by the U.S. Navy indicated routine tactical mid-frequency sonar operations from individual surface vessels over relatively short durations and small spatial scales within the area and time period investigated. No marine mammals were detected by marine mammal observers on operational vessels; standard operating procedure for surface naval vessels operating mid-frequency sonar is the use of trained visual lookouts using high-powered binoculars. Sound propagation modeling using information provided to NMFS indicated that acoustic conditions in the vicinity likely depended heavily on position of the receivers (e.g., range, bearing, depth) relative to that of the sources. Absent explicit information on the location of animals meant that it was not possible to estimate received acoustic exposures from active sonar transmissions. Nonetheless, the event was associated in time and space with naval activity using mid-frequency active sonar. It also had a number of features in common (e.g., the “atypical” distribution of strandings involving multiple offshore species, all stranding alive, and without evidence of common infectious or other disease process) with other sonar-related cetacean mass stranding events. Given that this event was the only stranding of offshore species to occur within a 2-3 day period in the region on record (i.e., a very rare event), and given the occurrence of the event simultaneously in time and space with a naval exercise using active sonar, the association between the naval sonar activity and the location and timing of the event could be a causal rather than a coincidental relationship. However, evidence supporting a definitive association is lacking, and, in particular, there are differences in operational/environmental characteristics between this event and previous events where sonar has apparently played a role in marine mammal strandings. This does not preclude behavorial avoidance of noise exposure. No harmful algal blooms were present along the Atlantic coast south of the Chesapeake Bay during the months prior to the event. Environmental conditions, including strong winds, changes in upwelling- to downwelling-favorable conditions, and gently sloping bathymetry, were consistent with conditions which have been correlated with other mass strandings. In summary, we did not find commonality in gross and histologic lesions that would indicate a single cause for this stranding event. Three pilot whales and one dwarf sperm whale had debilitating conditions identified that could have contributed to stranding, one pilot whale had a debilitating condition (subdural hemorrhage) that could have been present prior to or resulting from stranding. While the pilot and dwarf sperm whale strandings may have had a common cause, the minke whale stranding was probably just coincidental. On the basis of examination of physical evidence in the affected whales, however, we cannot definitively conclude that there was or was not a causal link between anthropogenic sonar activity or environmental conditions (or a combination of these factors) and the strandings. Overall, the cause of UMESE0501Sp in North Carolina is not and likely will not be definitively known. (PDF contains 240 pages)
Resumo:
To be in compliance with the Endangered Species Act and the Marine Mammal Protection Act, the United States Department of the Navy is required to assess the potential environmental impacts of conducting at-sea training operations on sea turtles and marine mammals. Limited recent and area-specific density data of sea turtles and dolphins exist for many of the Navy’s operations areas (OPAREAs), including the Marine Corps Air Station (MCAS) Cherry Point OPAREA, which encompasses portions of Core and Pamlico Sounds, North Carolina. Aerial surveys were conducted to document the seasonal distribution and estimated density of sea turtles and dolphins within Core Sound and portions of Pamlico Sound, and coastal waters extending one mile offshore. Sea Surface Temperature (SST) data for each survey were extracted from 1.4 km/pixel resolution Advanced Very High Resolution Radiometer remote images. A total of 92 turtles and 1,625 dolphins were sighted during 41 aerial surveys, conducted from July 2004 to April 2006. In the spring (March – May; 7.9°C to 21.7°C mean SST), the majority of turtles sighted were along the coast, mainly from the northern Core Banks northward to Cape Hatteras. By the summer (June – Aug.; 25.2°C to 30.8°C mean SST), turtles were fairly evenly dispersed along the entire survey range of the coast and Pamlico Sound, with only a few sightings in Core Sound. In the autumn (Sept. – Nov.; 9.6°C to 29.6°C mean SST), the majority of turtles sighted were along the coast and in eastern Pamlico Sound; however, fewer turtles were observed along the coast than in the summer. No turtles were seen during the winter surveys (Dec. – Feb.; 7.6°C to 11.2°C mean SST). The estimated mean surface density of turtles was highest along the coast in the summer of 2005 (0.615 turtles/km², SE = 0.220). In Core and Pamlico Sounds the highest mean surface density occurred during the autumn of 2005 (0.016 turtles/km², SE = 0.009). The mean seasonal abundance estimates were always highest in the coastal region, except in the winter when turtles were not sighted in either region. For Pamlico Sound, surface densities were always greater in the eastern than western section. The range of mean temperatures at which turtles were sighted was 9.68°C to 30.82°C. The majority of turtles sighted were within water ≥ 11°C. Dolphins were observed within estuarine waters and along the coast year-round; however, there were some general seasonal movements. In particular, during the summer sightings decreased along the coast and dolphins were distributed throughout Core and Pamlico Sounds, while in the winter the majority of dolphins were located along the coast and in southeastern Pamlico Sound. Although relative numbers changed seasonally between these areas, the estimated mean surface density of dolphins was highest along the coast in the spring of 2006 (9.564 dolphins/km², SE = 5.571). In Core and Pamlico Sounds the highest mean surface density occurred during the autumn of 2004 (0.192 dolphins/km², SE = 0.066). The estimated mean surface density of dolphins was lowest along the coast in the summer of 2004 (0.461 dolphins/km², SE = 0.294). The estimated mean surface density of dolphins was lowest in Core and Pamlico Sounds in the summer of 2005 (0.024 dolphins/km², SE = 0.011). In Pamlico Sound, estimated surface densities were greater in the eastern section except in the autumn. Dolphins were sighted throughout the entire range of mean SST (7.60°C to 30.82°C), with a tendency towards fewer dolphins sighted as water temperatures increased. Based on the findings of this study, sea turtles are most likely to be encountered within the OPAREAs when SST is ≥ 11°C. Since sea turtle distributions are generally limited by water temperature, knowing the SST of a given area is a useful predictor of sea turtle presence. Since dolphins were observed within estuarine waters year-round and throughout the entire range of mean SST’s, they likely could be encountered in the OPAREAs any time of the year. Although our findings indicated the greatest number of dolphins to be present in the winter and the least in the summer, their movements also may be related to other factors such as the availability of prey. (PDF contains 28 pages)
Resumo:
Introduction: The National Oceanic and Atmospheric Administration’s Biogeography Branch has conducted surveys of reef fish in the Caribbean since 1999. Surveys were initially undertaken to identify essential fish habitat, but later were used to characterize and monitor reef fish populations and benthic communities over time. The Branch’s goals are to develop knowledge and products on the distribution and ecology of living marine resources and provide resource managers, scientists and the public with an improved ecosystem basis for making decisions. The Biogeography Branch monitors reef fishes and benthic communities in three study areas: (1) St. John, USVI, (2) Buck Island, St. Croix, USVI, and (3) La Parguera, Puerto Rico. In addition, the Branch has characterized the reef fish and benthic communities in the Flower Garden Banks National Marine Sanctuary, Gray’s Reef National Marine Sanctuary and around the island of Vieques, Puerto Rico. Reef fish data are collected using a stratified random sampling design and stringent measurement protocols. Over time, the sampling design has changed in order to meet different management objectives (i.e. identification of essential fish habitat vs. monitoring), but the designs have always remained: • Probabilistic – to allow inferences to a larger targeted population, • Objective – to satisfy management objectives, and • Stratified – to reduce sampling costs and obtain population estimates for strata. There are two aspects of the sampling design which are now under consideration and are the focus of this report: first, the application of a sample frame, identified as a set of points or grid elements from which a sample is selected; and second, the application of subsampling in a two-stage sampling design. To evaluate these considerations, the pros and cons of implementing a sampling frame and subsampling are discussed. Particular attention is paid to the impacts of each design on accuracy (bias), feasibility and sampling cost (precision). Further, this report presents an analysis of data to determine the optimal number of subsamples to collect if subsampling were used. (PDF contains 19 pages)
Resumo:
Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Team developed digital benthic habitat maps for all MLCD and adjacent habitats. These maps were used to evaluate the efficacy of existing MLCDs for biodiversity conservation and fisheries replenishment, using a spatially explicit stratified random sampling design. Coupling the distribution of habitats and species habitat affinities using GIS technology elucidates species habitat utilization patterns at scales that are commensurate with ecosystem processes and is useful in defining essential fish habitat and biologically relevant boundaries for MPAs. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that the abundance and distribution of species and assemblages exhibited strong correlations with habitat types. Fish assemblages in the colonized and uncolonized hardbottom habitats were found to be most similar among all of the habitat types. Much of the macroalgae habitat sampled was macroalgae growing on hard substrate, and as a result showed similarities with the other hardbottom assemblages. The fish assemblages in the sand habitats were highly variable but distinct from the other habitat types. Management regime also played an important role in the abundance and distribution of fish assemblages. MLCDs had higher values for most fish assemblage characteristics (e.g. biomass, size, diversity) compared with adjacent fished areas and Fisheries Management Areas (FMAs) across all habitat types. In addition, apex predators and other targeted resources species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations. Habitat complexity, quality, size and level of protection from fishing were important determinates of MLCD effectiveness with respect to their associated fish assemblages. (PDF contains 217 pages)
Resumo:
All abalones belong to the genus Haliotis sensu latu, family Haliotidae. The 75 species known worldwide (Booloot ian et, al. 1962) are anatomically similar and all are adapted for attachment to hard substrates. Seven species are widely distributed along the coast of California (Cox 1962; Mottet 19781, of which several are important in the comercial and sport fisheries of the Pacific Southwest. (PDF has 19 pages.)
Resumo:
Policy makers, natural resource managers, regulators, and the public often call on scientists to estimate the potential ecological changes caused by both natural and human-induced stresses, and to determine how those changes will impact people and the environment. To develop accurate forecasts of ecological changes we need to: 1) increase understanding of ecosystem composition, structure, and functioning, 2) expand ecosystem monitoring and apply advanced scientific information to make these complex data widely available, and 3) develop and improve forecast and interpretative tools that use a scientific basis to assess the results of management and science policy actions. (PDF contains 120 pages)