682 resultados para Marine Reserve
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop entitled, "Biological Platforms as Sensor Technologies and their Use as Indicators for the Marine Environment" was held in Seward, Alaska, September 19 - 21,2007. The workshop was co-hosted by the University of Alaska Fairbanks (UAF) and the Alaska SeaLife Center (ASLC). The workshop was attended by 25 participants representing a wide range of research scientists, managers, and manufacturers who develop and deploy sensory equipment using aquatic vertebrates as the mode of transport. Eight recommendations were made by participants at the conclusion of the workshop and are presented here without prioritization: 1. Encourage research toward development of energy scavenging devices of suitable sizes for use in remote sensing packages attached to marine animals. 2. Encourage funding sources for development of new sensor technologies and animal-borne tags. 3. Develop animal-borne environmental sensor platforms that offer more combined systems and improved data recovery methodologies, and expand the geographic scope of complementary fixed sensor arrays. 4. Engage the oceanographic community by: a. Offering a mini workshop at an AGU ocean sciences conference for people interested in developing an ocean carbon program that utilizes animal-borne sensor technology. b. Outreach to chemical oceanographers. 5. Min v2d6.sheepserver.net e and merge technologies from other disciplines that may be applied to marine sensors (e.g. biomedical field). 6. Encourage the NOAA Permitting Office to: a. Make a more predictable, reliable, and consistent permitting system for using animal platforms. b. Establish an evaluation process. c. Adhere to established standards. 7. Promote the expanded use of calibrated hydrophones as part of existing animal platforms. 8. Encourage the Integrated Ocean Observing System (IOOS) to promote animal tracking as effective samplers of the marine environment, and use of animals as ocean sensor technology platforms. [PDF contains 20 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Optical Remote Sensing of Coastal Habitats was convened January 9-11, 2006 at Moss Landing Marine Laboratories in Moss Landing, California, sponsored by the ACT West Coast regional partnership comprised of the Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). The "Optical Remote Sensing of Coastal Habitats" (ORS) Workshop completes ACT'S Remote Sensing Technology series by building upon the success of ACT'S West Coast Regional Partner Workshop "Acoustic Remote Sensing Technologies for Coastal Imaging and Resource Assessment" (ACT 04-07). Drs. Paul Bissett of the Florida Environmental Research Institute (FERI) and Scott McClean of Satlantic, Inc. were the ORS workshop co-chairs. Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the role of ORS technologies in coastal resource assessment and management. The workshop was organized to examine the current state of multi- and hyper-spectral imaging technologies with the intent to assess the current limits on their routine application for habitat classification and resource monitoring of coastal watersheds, nearshore shallow water environments, and adjacent optically deep waters. Breakout discussions focused on the capabilities, advantages ,and limitations of the different technologies (e.g., spectral & spatial resolution), as well as practical issues related to instrument and platform availability, reliability, hardware, software, and technical skill levels required to exploit the data products generated by these instruments. Specifically, the participants were charged to address the following: (1) Identify the types of ORS data products currently used for coastal resource assessment and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (2) Identify barriers and challenges to the application of ORS technologies in management and research activities; (3) Recommend a series of community actions to overcome identified barriers and challenges. Plenary presentations by Drs. Curtiss 0. Davis (Oregon State University) and Stephan Lataille (ITRES Research, Ltd.) provided background summaries on the varieties of ORS technologies available, deployment platform options, and tradeoffs for application of ORS data products with specific applications to the assessment of coastal zone water quality and habitat characterization. Dr. Jim Aiken (CASIX) described how multiscale ground-truth measurements were essential for developing robust assessment of modeled biogeochemical interpretations derived from optically based earth observation data sets. While continuing improvements in sensor spectral resolution, signal to noise and dynamic range coupled with sensor-integrated GPS, improved processing algorithms for georectification, and atmospheric correction have made ORS data products invaluable synoptic tools for oceanographic research, their adoption as management tools has lagged. Seth Blitch (Apalachicola National Estuarine Research Reserve) described the obvious needs for, yet substantial challenges hindering the adoption of advanced spectroscopic imaging data products to supplement the current dominance of digital ortho-quad imagery by the resource management community, especially when they impinge on regulatory issues. (pdf contains 32 pages)
Resumo:
In the Cayman Islands we are enriched with a wonderful natural environment. In this Green Guide to our Marine Environment we hope to show you how all of our lives on these three magical islands are intimately connected to the land and the sea that surrounds it. Like many of our Caribbean neighbours, a large proportion of our economy depends on reef-based fishing, diving and tourism. The beauty of our coral reefs, our beaches and our lagoons is that it is part of our heritage, and it draws many thousands of overseas visitors to our shores. It is our responsibility, as stakeholders sharing this beautiful environment, to do what we can to minimise our impact upon it. Ogier has sponsored the Green Guide, and through this publication, is helping us to preserve our natural and cultural heritage.... [PDF contains 32 pages]
Resumo:
The annual estimated total marine fish catch in Nigeria for the period 1971 to 1979 is 0.3299 million metric tons. The differential distribution pattern of the predominant fish groups for the maritime states, the component species, their life habits in relation to hydrographic factors leasing to seasonal fluctuations in the fisheries are highlighted, focussing also on the types of fishing carafts and gear in common use along the coastal states and the fish species obtained from them. The landings by the exploratory and commercial fishing trawlers including the distant water vessels (imports) form about 4.24% of the total marine fish landing
Resumo:
The current approval procedure for wind farm proposals in the German EEZ only considers site specific conflict analysis between the wind farm and fisheries. Due to the relatively small spatial coverage of single sites potential opportunity losses to the fisheries are always considered as low or negligible. Cumulative effects on fisheries that will occur once all proposed wind farms are in place are not yet considered adequately. However, those cumulative effects will be quite substantial because, in particular, opportunities to catch such valuable species as flatfish will be considerably reduced.
Resumo:
An examination is made of investment prospects in the Nigerian marine fisheries, considering the following sectors: inshore demersal fishery; inshore pelagic fishery; and the offshore pelagic fishery. The marine fisheries resources of countries with which Nigeria has bilateral fishing rights agreements are discussed, considering Equatorial Guinea, Guinea Conakry, Guinea Bissau, Senegal and Mauritania. Fishing gear and methods for the marine fishery sectors are outlined. Market potentials for fish products and profitability are also examined
Resumo:
(PDF contains 33 pages)
Resumo:
A diagnostic survey of the incidence of mayfly (Povilla sp.) infestation of wooden infrastructures of the artisanal fishers in ten (10) lagoons and marine fishing villages of Ogun States (Nigeria) was carried out through the application of structured questionnaire and participatory Rural Appraisal interviews. The demographic, infrastructural and socioeconomic characteristics of the ten fishing villages sampled were derived and analyzed. The infestation which occurs all year round is found to be most prevalent (70%) in the wet season, increasing proportionally with salinity from 56% (brackish water); to 63% (marine water). The life-span of Povilla sp. is reduced from 55% to 62% (freshwater); 41% (brackish water) and 38% (marine water). Annual financial loss of N10,000.00 per fisher or N80,000,000.00 to the 8000 artisanal fishers affected in Ogun State is discussed. It is recommended that fishers should preferably use non-wood crafts and infrastructures while adopting appropriate management strategies for containing the existing infestation
Resumo:
The development of fish hatcheries and fish fingerling production in Nigeria has all along concentrated largely on the freshwater fish species without paying enough attention to the more numerous fish species that abound in our coastal/marine environment. This paper, therefore, tries to highlight some basic technologies (in term of design and management) of marine fish hatchery based on the author's experiences in Southeast Asia. Appropriate adaptable technologies for the production of our indigenous species such as the Snappers, Groupers etc. are also discussed. General recommendations are made for marine fish hatchery development in Nigeria
Resumo:
This report summarizes initial work to incorporate Photometries CH250 charge-coupled device (CCD) detectors in the NOAAIMLML Marine Optics System (MOS). The MOS spectroradiometer will be used primarily in the Marine Optics Buoy (MOBY) to surface truth the ocean color satellite, SeaWiFS, scheduled for launch later this year. This work was funded through Contract NAS5-31746 to NASA, Goddard Space Flight Center. (PDF contains 24 pages)
Resumo:
Although maritime regions support a large portion of the world’s human population, their value as habitat for other species is overlooked. Urban structures that are built in the marine environment are not designed or managed for the habitat they provide, and are built without considering the communities of marine organisms that could colonize them (Clynick et al., 2008). However, the urban waterfront may be capable of supporting a significant proportion of regional aquatic biodiversity (Duffy-Anderson et al., 2003). While urban shorelines will never return to their original condition, some scientists think that the habitat quality of urban waterfronts could be significantly improved through further research and some design modifications, and that many opportunities exist to make these modifications (Russel et al., 1983, Goff, 2008). Habitat enhancing marine structures (or HEMS) are a potentially promising approach to address the impact of cities on marine organisms including habitat fragmentation and degradation. HEMS are a type of habitat improvement project that are ecologically engineered to improve the habitat quality of urban marine structures such as bulkheads and docks for marine organisms. More specifically, HEMS attempt to improve or enhance the physical habitat that organisms depend on for survival in the inter- and sub-tidal waterfronts of densely populated areas. HEMS projects are targeted at areas where human-made structures cannot be significantly altered or removed. While these techniques can be used in suburban or rural areas restoration or removal is preferred in these settings, and HEMS are resorted to only if removal of the human-made structure is not an option. Recent research supports the use of HEMS projects. Researchers have examined the communities found on urban structures including docks, bulkheads, and breakwaters. Complete community shifts have been observed where the natural shoreline was sandy, silty, or muddy. There is also evidence of declines in community composition, ecosystem functioning, and increases in non-native species abundances in assemblages on urban marine structures. Researchers have identified two key differences between these substrates including the slope (seawalls are vertical; rocky shores contain multiple slopes) and microhabitat availability (seawalls have very little; rocky shores contain many different types). In response, researchers have suggested designing and building seawalls with gentler slopes or a combination of horizontal and vertical surfaces. Researchers have also suggested incorporating microhabitat, including cavities designed to retain water during low tide, crevices, and other analogous features (Chapman, 2003; Moreira et al., 2006) (PDF contains 4 pages)
Resumo:
Technological advances in the marine renewable energy industry and increased clarity about the leasing and licensing process are fostering development proposals in both state and federal waters. The ocean is becoming more industrialized and competition among all marine space users is developing (Buck et al. 2004). More spatial competition can lead to conflict between ocean users themselves, and to tensions that spill over to include other stakeholders and the general public (McGrath 2004). Such conflict can wind up in litigation, which is costly and takes agency time and financial resources away from other priorities. As proposals for marine renewable energy developments are evaluated, too often decision-makers lack the tools and information to properly account for the cumulative effects and the tradeoffs associated with alternative human uses of the ocean. This paper highlights the nature of marine space conflicts associated with marine renewable energy literature highlights key issues for the growth of the marine renewable energy sector in the United States. (PDF contains 4 pages)
Resumo:
Non-governmental organizations (NGOs) are now major players in the realm of environmental conservation. While many environmental NGOs started as national organizations focused around single-species protection, governmental advocacy, and preservation of wilderness, the largest now produce applied conservation science and work with national and international stakeholders to develop conservation solutions that work in tandem with local aspirations. Marine managed areas (MMAs) are increasingly being used as a tool to manage anthropogenic stressors on marine resources and protect marine biodiversity. However, the science of MMA is far from complete. Conservation International (CI) is concluding a 5 year, $12.5 million dollar Marine Management Area Science (MMAS) initiative. There are 45 scientific projects recently completed, with four main “nodes” of research and conservation work: Panama, Fiji, Brazil, and Belize. Research projects have included MMA ecological monitoring, socioeconomic monitoring, cultural roles monitoring, economic valuation studies, and others. MMAS has the goals of conducting marine management area research, building local capacity, and using the results of the research to promote marine conservation policy outcomes at project sites. How science is translated into policy action is a major area of interest for science and technology scholars (Cash and Clark 2001; Haas 2004; Jasanoff et al. 2002). For science to move policy there must be work across “boundaries” (Jasanoff 1987). Boundaries are defined as the “socially constructed and negotiated borders between science and policy, between disciplines, across nations, and across multiple levels” (Cash et al. 2001). Working across the science-policy boundary requires boundary organizations (Guston 1999) with accountability to both sides of the boundary, among other attributes. (Guston 1999; Clark et al. 2002). This paper provides a unique case study illustrating how there are clear advantages to collaborative science. Through the MMAS initiative, CI built accountability into both sides of the science-policy boundary primarily through having scientific projects fed through strong in-country partners and being folded into the work of ongoing conservation processes. This collaborative, boundary-spanning approach led to many advantages, including cost sharing, increased local responsiveness and input, better local capacity building, and laying a foundation for future conservation outcomes. As such, MMAS can provide strong lessons for other organizations planning to get involved in multi-site conservation science. (PDF contains 3 pages)