214 resultados para Eastern question (Balkan)
Resumo:
During 1995 and 1996, the National Marine Fisheries Service (NMFS), conducted pilot studies to develop survey methodology and a sampling strategy for assessment of coastal shark populations in the Gulf of Mexico and western North Atlantic. Longline gear similar to that used in the commercial shark fishery was deployed at randomly selected stations within three depth strata per 60 nautical mile gridf rom Brownsville, Tex. to Cape Ann, Mass. The survey methodology and gear design used in these surveys proved effective for capturing many of the small and large coastal sharks regulated under the auspices of the 1993 Fisheries Management Plan (FMP) for Sharks oft he Atlantic Ocean. Shark catch rates, species composition, and relative abundance documented in these pilot surveys were similar to those reported from observer programs monitoring commercial activities. During 78 survey days, 269 bottom longline sets were completed with 879 sharks captured.
Resumo:
Mexico has an oyster industry of substantial size, ranking about sixth in the world. In 1993, among the top ten oyster producers, Korea, Japan, the United States, China, and France ranked ahead of Mexico, while the Philippines, Australia, Canada, and New Zealand trailed it (Fig. 1). On its east coast, the species landed is the eastern oyster, Crassostrea virginica, while on its west coast C. corteziensis, C. iridescens, and the Pacific oyster, C. gigas, are landed. During the last 10-15 years, annual production often was at least 50,000 t of shelled oysters, or nearly 1.5 million bushels (Anonymous, 1995), with the great preponderance (90%) coming from a series of lagoons connecting with the Gulf of Mexico along the east coast (Fig. 2) and the remainder produced on the west coast.
Resumo:
On an early fall day in September 1962 I sat quietly, thoughtfully, at my large desk in a newly renovated corner office in the old Crane wing of the Lillie Building, Marine Biological Laboratory (MBL), Woods Hole, Massachusetts. Looking out through high, ancient windows, I could see the busy main street of Woods Hole in the foreground, Martha's Vineyard beyond, behind me the MBL Stone Candle House, across the street the Woods Hole Oceanographic Institution (WHOI) and to the far right, the Biological Laboratory of the Bureau of Commercial Fisheries (BCF)(Fig. 1). Down the inner hall from my office stretched renovated quarters for the fledgling, ongoing, year-round MBL Systematics-Ecology Program (SEP), which I had been invited to direct.
Resumo:
Assessment of walleye pollock, Theragra chalcogramma, in the eastern Bering Sea is complicated because the species is semi-pelagic in habit. Annual bottom trawl surveys provide estimates of demersal abundance on the eastern Bering Sea shelf. Every third year (starting in 1979), an extended area of the shelf and slope is surveyed and an echo integration-midwater trawl survey provides estimates of pollock abundance in midwater. Overall age-specific population and biomass estimates are obtained by summing the demersal and midwater results, assuming that the bottom trawl samples only pollock inhabiting the lower 3 m of the water column. Total population estimates have ranged from 134 x 109 fish in 1979 to 27 x 109 fish in 1988. The very high abundance observed in 1979 reflects the appearance of the unusually large 1978 year class. Changes in age-specific abundance estimates have documented the passage of strong (1978, 1982, and 1984) and weak year classes through the fishery. In general, older fish are more demersally oriented and younger fish are more abundant in midwater, but this trend was not always evident in the patterns of abundance of 1- and 2-year-old fish. As the average age of the population has increased, so has the relative proportion of pollock estimated by the demersal surveys. Consequently, it is unlikely that either technique can be used independently to monitor changes in abundance and age composition. Midwater assessment depends on pelagic trawl samples for size and age composition estimates, so both surveys are subject to biases resulting from gear performance and interactions between fish and gear. In this review, we discuss survey methodology and evaluate assumptions regarding catchability and availability as they relate to demersal, midwater, and overall assessment.
Resumo:
Yellowfin sole, Pleuronectes asper, is the second most abundant flatfish in the North Pacific Ocean and is most highly concentrated in the eastern Bering Sea. It has been a target species in the eastern Bering Sea since the mid-1950's, initially by foreign distant-water fisheries but more recently by U.S. fisheries. Annual commercial catches since 1959 have ranged from 42,000 to 554,000 metric tons (t). Yellowfin sole is a relatively small flatfish averaging about 26 cm in length and 200 g in weight in commercial catches. It is distributed from nearshore waters to depths of about 100 m in the eastern Bering Sea in summer, but moves to deeper water in winter to escape sea ice. Yellowfin sole is a benthopelagic feeder. It is a longlived species (>20 years) with a correspondingly low natural mortality rate estimated at 0.12. After being overexploited during the early years of the fishery and suffering a substantial decline in stock abundance, the resource has recovered and is currently in excellent condition. The biomass during the 1980's may have been as high as, if not higher than, that at the beginning of the fishery. Based on results of demersal trawl surveys and two age structured models, the current exploitable biomass has been estimated to range between 1.9 and 2.6 million t. Appropriate harvest strategies were investigated under a range of possible recruitment levels. The recommended harvest level was calculated by multiplying the yield derived from the FOI harvest level (161 g at F = 0.14) hy an average recruitment value resulting in a commercial harvest of 276,900 t, or about 14% of the estimated exploitable biomass.
Resumo:
Because dolphins sometimes travel with yellowfin tuna, Thunnus albacares, in the eastern tropical Pacific (ETP), purse seiners use the dolphins to locate and capture tuna schools. During the process of setting the purse seine nets, dolphins often become entangled and drown before they can be released. Data for the U.S. purse seine fleet in the ETP during 1979-88 show that dolphin mortality rates in sets made during the night are higher than mortality rates in sets made during the day. Even with efforts to reduce nightset mortality rates through the use of high intensity floodlights, night set mortality rates remain higher. The data are also used to simulate a regulation on the fishery aimed at eliminating night sets and show that dolphin mortality rates would decrease.