255 resultados para exploitation.
Resumo:
From 1947 to 1973, the U.S.S.R. conducted a huge campaign of illegal whaling worldwide. We review Soviet catches of humpback whales, Megaptera novaeangliae, in the Southern Ocean during this period, with an emphasis on the International Whaling Commission’s Antarctic Management Areas IV, V, and VI (the principal regions of illegal Soviet whaling on this species, south of Australia and western Oceania). Where possible, we summarize legal and illegal Soviet catches by year, Management Area, and factory fleet, and also include information on takes by other nations. Soviet humpback catches between 1947 and 1973 totaled 48,702 and break down as follows: 649 (Area I), 1,412 (Area II), 921 (Area III), 8,779 (Area IV), 22,569 (Area V), and 7,195 (Area VI), with 7,177 catches not currently assignable to area. In all, at least 72,542 humpback whales were killed by all operations (Soviet plus other nations) after World War II in Areas IV (27,201), V (38,146), and VI (7,195). More than one-third of these (25,474 whales, of which 25,192 came from Areas V and VI) were taken in just two seasons, 1959–60 and 1960–61. The impact of these takes, and of those from Area IV in the late 1950’s, is evident in the sometimes dramatic declines in catches at shore stations in Australia, New Zealand, and at Norfolk Island. When compared to recent estimates of abundance and initial population size, the large removals from Areas IV and V indicate that the populations in these regions remain well below pre-exploitation levels despite reported strong growth rates off eastern and western Australia. Populations in many areas of Oceania continue to be small, indicating that the catches from Area VI and eastern Area V had long-term impacts on recovery.
Resumo:
Unmanaged and unquantified artisanal fishing is ongoing at Navassa Island, a small oceanic island about 70 km west of Haiti that is part of the U.S. Caribbean Islands National Wildlife Refuge. Concern has been expressed regarding the possible impact of these fishing activities on reef resources, and no quantitative catch or effort data are available. However, informal qualitative observations made during a cruise in November 2002 suggest that escalation in fishing activity (and impact) has occurred since previous observations made in April 2000. Namely, size structure of fish was markedly reduced and the adoption of net fishing has allowed the exploitation of queen conch, Strombas gigas, and hawksbill turtles, Eretmochelys imbricata.
Resumo:
Aboriginal Australians consumed oysters before settlement by Europeans as shown by the large number of kitchen middens along Australia's coast. Flat oysters, Ostrea angasi, were consumed in southeastern Australia, whereas both flat and Sydney rock oysters, Saccostrea glomerata, are found in kitchen middens in southern New South Wales (NSW), but only Sydney rock oysters are found in northern NSW and southern Queensland. Oyster fisheries began with the exploitation of dredge beds, for the use of oyster shell for lime production and oyster meat for consumption. These natural oyster beds were nealy all exhausted by the late 1800's, and they have not recovered. Oyster farming, one of the oldest aquaculture industries in Australia, began as the oyster fisheries declined in the late 1800's. Early attempts at farming flat oysters in Tasmania, Victoria, and South Australia, which started in the 1880's, were abandoned in the 1890's. However, a thriving Sydney rock oyster industry developed from primitive beginnings in NSW in the 1870's. Sydney rock oysters are farmed in NSW, southern Queensland, and at Albany, Western Australia (WA). Pacific oysters, Crassostrea gigas, are produced in Tasmania, South Australia, and Port Stephens, NSW. FLant oysters currently are farmed only in NSW, and there is also some small-scale harvesting of tropical species, the coarl rock or milky oyster, S. cucullata, and th black-lip oyster, Striostrea mytiloides, in northern Queensland. Despite intra- and interstate rivalries, oyster farmers are gradually realizing that they are all part of one industry, and this is reflected by the establishment of the national Australian Shellfish Quality Assuarance Program and the transfer of farming technology between states. Australia's oyster harvests have remained relatively stable since Sydney rock oyster production peaked in the mid 1970's at 13 million dozen. By the end of the 1990's this had stabilized at around 8 million dozen, and Pacific oyster production reached a total of 6.5 million dozen from Tasmania, South Australia, and Port Stephens, a total of 14.5 million dozen oysters for the whole country. This small increase in production during a time of substantial human population growth shows a smaller per capita consumption and a declining use of oysters as a "side-dish."
Resumo:
Long-term trends in the abundance and distribution of several pinniped species and commercially important fisheries of New England and the contiguous U.S. west coast are reviewed, and their actual and potential interactions discussed. Emphasis is on biological interactions or competition. The pinnipeds include the western North Atlantic stock of harbor seals, Phoca vitulina concolor; western North Atlantic gray seals, Halochoerus grypus; the U.S. stock of California sea lions, Zalophus californianus californianus; the eastern stock of Steller sea lions, Eumetopias jubatus; and Pacific harbor seals, Phoca vitulina richardii. Fisheries included are those for Atlantic cod, Gadus morhua; silver hake, Merluccius bilinearis; Atlantic herring, Clupea harengus; the coastal stock of Pacific whiting, Merluccius productus; market squid, Loligo opalescens; northern anchovy, Engraulis mordax; Pacific her-ring, Clupea pallasi; and Pacific sardine, Sardinops sagax. Most of these pinniped populations have grown exponentially since passage of the U.S. Marine Mammal Protection Act in 1972. They exploit a broad prey assemblage that includes several commercially valuable species. Direct competition with fisheries is therefore possible, as is competition for the prey of commercially valuable fish. The expanding pinniped populations, fluctuations in commercial fish biomass, and level of exploitation by the fisheries may affect this potential for competition. Concerns over pinnipeds impacting fisheries (especially those with localized spawning stocks or at low biomass levels) are more prevalent than concerns over fisheries’ impacts on pinnipeds. This review provides a framework to further evaluate potential biological interactions between these pinniped populations and the commercial fisheries with which they occur.
Resumo:
A preliminary study of reef fish and sharks was conducted at Navassa Island in the Caribbean Sea during a 24-h period beginning 9 September 1998. Conducting a study at Navassa Island was of particular interest because exploitation of Navassa Island’s fishery resources has been considered minimal due to its remote location (southwest of the Windward Passage, Caribbean Sea) and lack of human habitation. Reef fish (and associated habitats) were assessed with stationary underwater video cameras at 3 survey sites; sharks were assessed by bottom longlining at 5 survey sites. Fifty-seven reef fish identifications to lowest possible taxon were made from video footage. Longline catches produced 3 shark species and 3 incidental catch species. When results from the 1998 National Marine Fisheries Service (NMFS) project are combined with a previous 1977 NMFS survey of Navassa Island, 27 fish families, 79 fish identifications to lowest possible taxon, 4 invertebrate orders or families, 3 coraline families, and 2 macroalgae phyla are reported.
Resumo:
Between 1889 and 1916, the U. S. Fish Commission steamer Albatross made numerous trips to waters off southern California, particularly in and near San Diego Bay. The typical pattern for many years was to conduct cruises in waters off the Pacific Northwest or Alaska in summer months and waters off southern California in winter months. The Albatross conducted the first depth soundings and benthic profiles for southern California waters and secured the first samples of many endemic marine animals of this region. Albatross collections formed the basis for numerous definitive monographs of invertebrates and vertebrates that were published in subsequent years. The Albatross anchored in San Diego Bay in 1894, conducting the first biological investigations of the bay, and returned to sample again in many subsequent years. The ship and its crew also examined Cortez and Tanner banks for exploitation potential and conducted the first biological investigations of southern California’s tuna stocks in 1915 and 1916.
Resumo:
This study, part of a broader investigation of the history of exploitation of right whales, Balaena glacialis, in the western North Atlantic, emphasizes U.S. shore whaling from Maine to Delaware (from lat. 45°N to 38°30'N) in the period 1620–1924. Our broader study of the entire catch history is intended to provide an empirical basis for assessing past distribution and abundance of this whale population. Shore whaling may have begun at Cape Cod, Mass., in the 1620’s or 1630’s; it was certainly underway there by 1668. Right whale catches in New England waters peaked before 1725, and shore whaling at Cape Cod, Martha’s Vineyard, and Nantucket continued to decline through the rest of the 18th century. Right whales continued to be taken opportunistically in Massachusetts, however, until the early 20th century. They were hunted in Narragansett Bay, R.I., as early as 1662, and desultory whaling continued in Rhode Island until at least 1828. Shore whaling in Connecticut may have begun in the middle 1600’s, continuing there until at least 1718. Long Island shore whaling spanned the period 1650–1924. From its Dutch origins in the 1630’s, a persistent shore whaling enterprise developed in Delaware Bay and along the New Jersey shore. Although this activity was most profi table in New Jersey in the early 1700’s, it continued there until at least the 1820’s. Whaling in all areas of the northeastern United States was seasonal, with most catches in the winter and spring. Historically, right whales appear to have been essentially absent from coastal waters south of Maine during the summer and autumn. Based on documented references to specific whale kills, about 750–950 right whales were taken between Maine and Delaware, from 1620 to 1924. Using production statistics in British customs records, the estimated total secured catch of right whales in New England, New York, and Pennsylvania between 1696 and 1734 was 3,839 whales based on oil and 2,049 based on baleen. After adjusting these totals for hunting loss (loss-rate correction factor = 1.2), we estimate that 4,607 (oil) or 2,459 (baleen) right whales were removed from the stock in this region during the 38-year period 1696–1734. A cumulative catch estimate of the stock’s size in 1724 is 1,100–1,200. Although recent evidence of occurrence and movements suggests that right whales continue to use their traditional migratory corridor along the U.S. east coast, the catch history indicates that this stock was much larger in the 1600’s and early 1700’s than it is today. Right whale hunting in the eastern United States ended by the early 1900’s, and the species has been protected throughout the North Atlantic since the mid 1930’s. Among the possible reasons for the relatively slow stock recovery are: the very small number of whales that survived the whaling era to become founders, a decline in environmental carrying capacity, and, especially in recent decades, mortality from ship strikes and entanglement in fishing gear.
Resumo:
Alaska plaice, Pleuronectes quadrituberculatus, is one of the major flatfishes in the eastern Bering Sea ecosystem and is most highly concentrated in the shallow continental shelf of the eastern Bering Sea. Annual commercial catches have ranged from less than 1,000 metric tons (t) in 1963 to 62,000 t in 1988. Alaska plaice is a relatively large flatfish averaging about 32 cm in length and 390 g in weight in commercial catches. They are distributed from nearshore waters to a depth of about 100 m in the eastern Bering Sea during summer, but move to deeper continental shelf waters in winter to escape sea ice and cold water temperatures. Being a long-lived species (>30 years), they have a relatively low natural mortality rate estimated at 0.20. Maturing at about age 7, Alaska plaice spawn from April through June on hard sandy substrates of the shelf region, primarily around the 100 m isobath. Prey items primarily include polychaetes and other marine worms. In comparison with other flatfish, Alaska plaice and rock sole, Pleuronectes bilineatus, have similar diets but different habitat preferences with separate areas of peak population density which may minimize interspecific competition. Yellowfin sole, Pleuronectes asper, while sharing similar habitat, differs from these two species because of the variety of prey items in its diet. Competition for food resources among the three species appears to be low. The resource has experienced light exploitation since 1963 and is currently in good condition. Based on the results of demersal trawl surveys and age-structured analyses, the exploitable biomass increased from 1971 through the mid-1980’s before decreasing to the 1997 level of 500,000 t. The recommended 1998 harvest level, Allowable Biological Catch, was calculated from the Baranov catch equation based on the FMSY harvest level and the projected 1997 biomass, resulting in a commercial harvest of 69,000 t, or about 16% of the estimated exploitable biomass.
Resumo:
Four recognized species of menhaden, Brevoortia spp., occur in North American marine waters: Atlantic menhaden, B. tyrannus; Gulf menhaden, B. patronus; yellowfin menhaden. B. smithi; and finescale menhaden, B. gunteri. Three of the menhaden species are known to form two hybrid types. Members of the genus range from coastal waters of Veracruz, Mex., to Nova Scotia, Can. Atlantic and Gulf menhaden are extremely abundant within their respective ranges and support extensive purse-seine reduction (to fish meal and oil) fisheries. All menhaden species are estuarine dependent through late larval and juvenile stages. Depending on species and location within the range, spawning may occur within bays and sounds to a substantial distance offshore. Menhaden are considered to be filter-feeding, planktivorous omnivores as juveniles and adults. Menhaden eggs, immature developmental stages, and adults are potential prey for a large and diverse number of predators. North American menhadens, including two hybrids, are hosts for the parasitic isopod, Olencira praegustator, and the parasitic copepod, Lemaeenicus radiatus. Although the data are quite variable, a dome-shaped Ricker function is frequently used to describe the spawner-recruitment relationship for Atlantic and Gulf menhaden. Each of these species is treated as a single stock with respect to exploitation by the purse-seine reduction fishery. Estimates of instantaneous natural (other) mortality rates are O.45 for Atlantic menhaden and 1.1 for Gulf menhaden.
Resumo:
With its genesis in New England during the 1800's, the purse seine fishery for Atlantic menhaden, Brevoortia tyrannus, expanded south and by the early 1900's ranged the length of the eastern seaboard. The purse seine fishery for Gulf menhaden. B. patronus, is of relatively recent development, exploitation of the stock beginning in the late 1940's. Landings from both fisheries annually comprise 35-40% of the total U. S. fisheries landings, ranking menhaden first in terms of volume landed. Technological advances in harvesting methods, fish-spotting capabilities, and vessel designs accelerated after World War II, resulting in larger, faster, and wider-ranging carrier vessels, improved speed and efficiency of the harvest, and reduction in labor requirements. Chief products of the menhaden industry are fish meal, fish oil, and solubles, but research into new product lines is underway. Since 1955 on the Atlantic coast and 1964 on the Gulf coast, the NMFS has monitored the fisheries for biostatistical data. Annual data summaries of numbers-of-fish-at-age harvested, catch tonnage, and fishing effort of the fleet form the basis of routine stock assessments and annual catch forecasts to industry for the upcoming fishing season. After landings declined in the 1960's, the Atlantic menhaden stock has recovered through the 1970's and 1980's. Exceptional year classes of Gulf menhaden in recent years account for record landings during the 1980's.
Resumo:
The California fishery for red sea urchins, Strongylocentrotus franciscanus, has undergone explosive growth in recent years and is approaching full exploitation. Thus, there is considerable interest in enhancing stocks to maintain a high rate of landings. Fishable stocks of red sea urchins in different areas appear to be limited at three stages in their life history: By the availability of larvae, by the survival of newly settled to mid-sized animals, and by the food available to support growth and reproduction of larger animals. Here I review other efforts, notably the extensive Japanese work, to enhance fishable stocks of benthic marine invertebrates, and consider the potential options for red sea urchins at different points of limitation. These include collecting or culturing seed for outplanting, physical habitat improvement measures, improving the food supply, and conservation measures to protect existing stocks until alternate methods are proven and in place. The options are compared in terms of biological feasibility, capital and labor requirements, and potential implications for change in the structure of the fishing industry.
Resumo:
This is the Salmonid & Freshwater Fisheries Statistics for England & Wales 1996 produced by the Environment Agency in 1997. The principal aim of the Environment Agency in respect of fisheries is to maintain improve and develop fish stocks, the basic fisheries resource, in order to optimise the social and economic benefits from their sustainable exploitation. This report is the second collation of salmon and migratory trout catch statistics for England and Wales produced by the Environment Agency. For the years 1989-94, these statistics were published by the National Rivers Authority (NRA) and the years 1983-88 by the Ministry of Agriculture, Fisheries and Food, Directorate of Fisheries Research in its Data Report series. The 1996 data, have been presented in a broadly similar format to those of 1995. This report makes a general review of different catches: Northumbria, Yorkshire, Anglian, Thames, Southern, Wessex, South West, Severn-Trent, Welsh and North West.
Resumo:
This report is the third collation of salmon and migratory trout catch statistics for England and Wales produced by the Environment Agency. For the years 1989-94, these statistics were published by the National Rivers Authority (NRA) and the years 1983-88 by the Ministry of Agriculture, Fisheries and Food, Directorate of Fisheries Research in its Data Report series. This report is designed to be a reference document of declared salmonid catches in England and Wales and is produced in the autumn following the season. Salmon stock assessment data including provisional catches, counter run estimates and some juvenile data are now published in an annual assessment for the International Council for the Exploitation of the Seas (ICES). The first report in this series was published jointly by the Environment Agency and the Centre for Environment, Fisheries & Aquatic Science (CEFAS) in April 1997 (Anon 1998).
Resumo:
This report is the fourth collation of salmon and migratory trout catch statistics for England and Wales produced by the Environment Agency. For the years 1989-94 these statistics were published by the National Rivers Authority (NRA) and for the years 1983-88 by the Ministry of Agriculture, Fisheries and Food, Directorate of Fisheries Research, in its Data Report series. This report is designed to be a reference document of declared salmonid catches in England and Wales. Salmon stock assessment data including provisional catches, counter run estimates and some juvenile data are now published in an annual assessment for the International Council for the Exploitation of the Seas (ICES). The second report in this series was published jointly by the Environment Agency and the Centre for Environment, Fisheries & Aquatic Science (CEFAS) in April 1998 (Anon 1999).
Resumo:
This is the River Exe Salmon Action Plan Consultation document produced by the Environment Agency in 2003. The report pays attention on the external consultation of the River Exe Salmon Action Plan (SAP). This strategy represents an entirely new approach to salmon management within the UK and introduces the concept of river-specific salmon spawning targets as a salmon management tool. The River Exe SAP follows the format of those completed for the Rivers Teign, Torridge, Taw and Dart. It is the fifth of eight action plans that will be produced for salmon rivers within Devon Area. The River Exe SAP contains a description of the river catchment and highlights particular features that are relevant to the salmon population and the associated fishery. The Exe salmon stock is judged to be meeting its Conservation Limit. However, this assessment is uncertain as it is based on an estimate of rod exploitation rate, which in itself is also uncertain. At present there is no means of accurately assessing the River Exe salmon run. In common with many other rivers, estimation of stock using catch statistics and rod exploitation rate is the model used, when direct assessment is not possible. The installation of a fish counter on the lower river, or the use of other direct counting methods, would help to provide a direct assessment of the annual run of salmon into the river. This would improve our ability to estimate the spawning escapement and hence assess compliance with the Conservation Limit.