164 resultados para Spaniards California History Fiction.
Resumo:
The coastal Pacific Ocean off northern and central California encompasses the strongest seasonal upwelling zone in the California Current ecosystem. Headlands and bays here generate complex circulation features and confer unusual oceanographic complexity. We sampled the coastal epipelagic fish community of this region with a surface trawl in the summer and fall of 2000–05 to assess patterns of spatial and temporal community structure. Fifty-three species of fish were captured in 218 hauls at 34 fixed stations, with clupeiform species dominating. To examine spatial patterns, samples were grouped by location relative to a prominent headland at Point Reyes and the resulting two regions, north coast and Gulf of the Farallones, were plotted by using nonmetric multidimensional scaling. Seasonal and interannual patterns were also examined, and representative species were identified for each distinct community. Seven oceanographic variables measured concurrently with trawling were plotted by principal components analysis and tested for correlation with biotic patterns. We found significant differences in community structure by region, year, and season, but no interaction among main effects. Significant differences in oceanographic conditions mirrored the biotic patterns, and a match between biotic and hydrographic structure was detected. Dissimilarity between assemblages was mostly the result of differences in abundance and frequency of occurrence of about twelve common species. Community patterns were best described by a subset of hydrographic variables, including water depth, distance from shore, and any one of several correlated variables associated with upwelling intensity. Rather than discrete communities with clear borders and distinct member species, we found gradients in community structure and identified stations with similar fish communities by region and by proximity to features such as the San Francisco Bay.
Resumo:
Commercial fisheries that are managed with minimum size limits protect small fish of all ages and may affect size-selective mortality by the differential removal of fast growing fish. This differential removal may decrease the average size at age, maturation, or sexual transition of the exploited population. When fishery-independent data are not available, a comparison of life history parameters of landed with those of discarded fish (by regulation) will indicate if differential mortality is occurring with the capture of young but large fish (fast growing phenotypes). Indications of this differential size-selective mortality would include the following: the discarded portion of the target fish would have similar age ranges but smaller sizes at age, maturation, and sexual transition as that of landed fish. We examined three species with minimum size limits but different exploitation histories. The known heavily exploited species (Rhomboplites aurorubens [vermilion snapper] and Pagrus pagrus [red porgy]) show signs of this differential mortality. Their landed catch includes many young, large fish, whereas discarded fish had a similar age range and mean ages but smaller sizes at age than the landed fish. The unknown exploited species, Mycteroperca phenax (scamp), showed no signs of differential mortality due to size-selective fishing. Landed catch consisted of old, large fish and discarded scamp had little overlap in age ranges, had significantly different mean ages, and only small differences in size at age when compared to comparable data for landed fish.
Resumo:
Distribution and demographics of the hogfish (Lachnolaimus maximus) were investigated by using a combined approach of in situ observations and life history analyses. Presence, density, size, age, and size and age at sex change all varied with depth in the eastern Gulf of Mexico. Hogfish (64–774 mm fork length and 0–19 years old) were observed year-round and were most common over complex, natural hard bottom habitat. As depth increased, the presence and density of hogfish decreased, but mean size and age increased. Size at age was smaller nearshore (<30 m). Length and age at sex change of nearshore hogfish were half those of offshore hogfish and were coincident with the minimum legal size limit. Fishing pressure is presumably greater nearshore and presents a confounding source of increased mortality; however, a strong red tide occurred the year before this study began and likely also affected nearshore demographics. Nevertheless, these data indicate ontogenetic migration and escapement of fast-growing fish to offshore habitat, both of which should reduce the likelihood of fishing-induced evolution. Data regarding the hogfish fishery are limited and regionally dependent, which has confounded previous stock assessments; however, the spatially explicit vital rates reported herein can be applied to future monitoring efforts.
Resumo:
Citharichthys cornutus and C. gymnorhinus, diminutive flatfishes inhabiting continental shelves in the western Atlantic Ocean, are infrequently reported and poorly known. We identified 594 C. cornutus in 56 different field collections (68–287 m; most between 101–200 m) off the eastern United States, Bahamas, and eastern Caribbean Sea. Historical records and recently captured specimens document the northern geographic range of adults on the shelf off New Jersey (40°N, 70°W). Citharichthys cornutus measured 17.2–81.3 mm standard length (SL); males (20.0–79.1 mm SL) and females (28.0–81.3 mm SL) attain similar sizes (sex could not be determined for fish <20 mm SL). Males reach nearly 100% maturity at ≥60 mm SL. The smallest mature females are 41.5 mm SL, and by 55.1 mm SL virtually all are mature. Juveniles are found with adults on the outer shelf. Only 214 C. gymnorhinus were located in 42 different field collections (35–201 m, with 90% between 61 and 120 m) off the east coast of the United States, Bahamas, and eastern Caribbean Sea. Adults are found as far north as the shelf off Cape Hatteras, NC (35°N, 75°W). This diminutive species (to 52.4 mm SL) is among the smallest flatfishes but males (n=131; 20.3–52.4 mm SL) attain a slightly larger maximum size than that of females (n=58; 26.2–48.0 mm SL). Males begin to mature between 29 and 35 mm SL and reach 100% maturity by 35–40 mm SL. Some females are mature at 29 mm SL, and all females >35.1 mm SL are mature. Overlooked specimens in museum collections and literature enabled us to correct long-standing inaccuracies in northern distributional limits that appear in contemporary literature and electronic data bases for these species. Associated locality-data for these specimens allow for proper evaluation of distributional information for these species in relation to hypotheses regarding shifts in species ranges due to climate change effects.
Resumo:
Larval and early juvenile stages of Symphurus oligomerus are described from 24 specimens from the Gulf of California. Meristic features were 48 – 49 total vertebrae, 87–94 dorsal-fin rays, 73–77 anal-fin rays, 12 caudal-fin rays, and five hypural bones. Seven larvae and one juvenile were cleared and stained to obtain the pterygiophore formula (1-3-2-2-2) that confirmed the identification of S. oligomerus. The pigment pattern from preflexion to juvenile stage consists of three bands on the dorsal margin and two bands on the ventral margin formed by star-shaped melanophores on the left side of the body. The intestine in preflexion to postflexion larvae forms an abdominal projection that ends in a short conical appendix. The intestine is supported by three cartilaginous struts; larvae with these physical attributes are called exterilium larvae. Preflexion larvae have two elongated dorsal-fin rays, and in flexion to postflexion larvae the second to the fourth dorsalfin rays are elongate. We found an apparent connection between the size at metamorphosis of the species of Symphurus and the depth distribution range of adults such that the fish species that metamorphose at a larger size have a deeper distribution as adults and exterilium larvae seem to correspond to species that have deeper distributions.
Resumo:
We evaluated habitat quality for juvenile California halibut (Paralichthys californicus) in a Pacific Coast estuary lacking in strong salinity gradients by examining density, recent otolith growth rates, and gut fullness levels of wild-caught and caged juveniles for one year. Juveniles <200 mm standard length were caught consistently in the inner, central, and outer sections of the estuary. The density of juveniles was two times higher in the inner estuary during most of the year, consistent with active habitat selection by part of the population. A generalized linear model indicated temperature, sampling time, and the interaction between salinity and temperature were significantly related to density. However, the model explained only 21% of the variance. Gut fullness levels of wild-caught juveniles were highest during the summer, but recent otolith growth rates were not related to temperature. The proportion of individuals feeding successfully indicated that seasonal differences in food availability are more important than spatial variation in prey abundance in driving feeding success. Feeding success of caged fishes was limited, precluding the use of growth rates as indicators of local habitat quality. However, marginal increment widths were reliable indicators of somatic growth at low growth rates over two-week periods. The relatively high growth rates and abundance of small wild-caught juveniles found throughout the estuary indicates that the entire estuary system has the potential for serving as nursery habitat.
Resumo:
Larvae of the genus Icelinus are collected more frequently than any other sculpin larvae in ichthyoplankton surveys in the Gulf of Alaska and Bering Sea, and larvae of the northern sculpin (Icelinus borealis) are commonly found in the ichthyofauna in both regions. Northern sculpin are geographically isolated north of the Aleutian Islands, Alaska, which allows for a definitive description of its early life history development in the Bering Sea. A combination of morphological characters, pigmentation, preopercular spine pattern, meristic counts, and squamation in later developmental stages is essential to identify Icelinus to the species level. Larvae of northern sculpin have 35–36 myomeres, pelvic fins with one spine and two rays, a bony preopercular shelf, four preopercular spines, 3–14 irregular postanal ventral melanophores, few, if any, melanophores ventrally on the gut, and in larger specimens, two rows of ctenoid scales directly beneath the dorsal fins extending onto the caudal peduncle. The taxonomic characters of the larvae of northern sculpin in this study may help differentiate northern sculpin larvae from its congeners, and other sympatric sculpin larvae, and further aid in solving complex systematic relationships within the family Cottidae.
Resumo:
Skates (family Rajidae) are oviparous and lay tough, thick-walled eggs. At least some skate species lay their eggs in spatially restricted nursery grounds where embryos develop and hatch (Hitz, 1964; Hoff, 2007). After hatching, neonates may quickly leave the nursery grounds (Hoff, 2007). Egg densities in these small areas may be quite high. As an example, in the eastern Bering Sea, a site <2 km2 harbored eggs of Alaska skate (Bathyraja parmifera) exceeding 500,000/km2. All skate nursery grounds have been identified over soft sea floors (Lucifora and García, 2004; Hoff, 2007).
Resumo:
The abundance and population density of cetaceans along the U.S. west coast were estimated from ship surveys conducted in the summer and fall of 1991, 1993, 1996, 2001, and 2005 by using multiple-covariate, line-transect analyses. Overall, approximately 556,000 cetaceans of 21 species were estimated to be in the 1,141,800-km2 study area. Delphinoids (Delphinidae and Phocoenidae), the most abundant group, numbered ~540,000 individuals. Abundance in other taxonomic groups included ~5800 baleen whales (Mysticeti), ~7000 beaked whales (Ziphiidae), and ~3200 sperm whales (Physeteridae). This study provides the longest time series of abundance estimates that includes all the cetacean species in any marine ecosystem. These estimates will be used to interpret the impacts of human-caused mortality (such as that documented in fishery bycatch and that caused by ship strikes and other means) and to evaluate the ecological role of cetaceans in the California Current ecosystem.
Resumo:
In this study we analyzed the diets of 26 nekton species collected from two years (2000 and 2002) off Oregon and northern California to describe dominant nekton trophic groups of the northern California Current (NCC) pelagic ecosystem. We also examined interannual variation in the diets of three nekton species. Cluster analysis of predator diets resulted in nekton trophic groups based on the consumption of copepods, euphausiids, brachyuran larvae, larval juvenile fishes, and adult nekton. However, many fish within trophic groups consumed prey from multiple trophic levels—euphausiids being the most widely consumed. Comparison of diets between years showed that most variation occurred with changes in the contribution of euphausiids and brachyuran larvae to nekton diets. The importance of euphausiids and other crustacean prey to nekton indicates that omnivory is an important characteristic of the NCC food web; however it may change during periods of lower or higher upwelling and ecosystem production.
Resumo:
Leatherback turtles (Dermochelys coriacea) are regularly seen off the U.S. West Coast, where they forage on jellyfish (Scyphomedusae) during summer and fall. Aerial line-transect surveys were conducted in neritic waters (<92 m depth) off central and northern California during 1990−2003, providing the first foraging population estimates for Pacific leatherback turtles. Males and females of about 1.1 to 2.1 m length were observed. Estimated abundance was linked to the Northern Oscillation Index and ranged from 12 (coefficient of variation [CV] =0.75) in 1995 to 379 (CV= 0.23) in 1990, averaging 178 (CV= 0.15). Greatest densities were found off central California, where oceanographic retention areas or upwelling shadows created favorable habitat for leatherback turtle prey. Results from independent telemetry studies have linked leatherback turtles off the U.S. West Coast to one of the two largest remaining Pacific breeding populations, at Jamursba Medi, Indonesia. Nearshore waters off California thus represent an important foraging region for the critically endangered Pacific leatherback turtle.
Resumo:
Fish-habitat associations were examined at three spatial scales in Monterey Bay, California, to determine how benthic habitats and landscape configuration have structured deepwater demersal fish assemblages. Fish counts and habitat variables were quantified by using observer and video data collected from a submersible. Fish responded to benthic habitats at scales ranging from cm’s to km’s. At broad-scales (km’s), habitat strata classified from acoustic maps were a strong predictor of fish assemblage composition. At intermediate-scales (m’s−100 m’s), fish species were associated with specific substratum patch types. At fine-scales (<1 m), microhabitat associations revealed differing degrees of microhabitat specificity, and for some species revealed niche separation within patches. The use of habitat characteristics in ecosystembased management, particularly as a surrogate for species distributions, will depend on resolving fish-habitat associations and habitat complexity over multiple scales.
Resumo:
We estimated annual abundance of juvenile blue (Sebastes mystinus), yellowtail (S. f lavidus), and black (S. melanops) rockfish off northern California over 21 years and evaluated the relationship of abundance to oceanographic variables (sea level anomaly, nearshore temperature, and offshore Ekman transport). Although mean annual abundance was highly variable (0.01−181 fish/minute), trends were similar for the three species. Sea level anomaly and nearshore temperature had the strongest relationship with interannual variation in rockfish abundance, and offshore Ekman transport did not correlate with abundance. Oceanographic events occurring in February and March (i.e., during the larval stage) had the strongest relationship with juvenile abundance, which indicates that year-class strength is determined during the larval stage. Also of note, the annual abundance of juvenile yellowtail rockfish was positively correlated with year-class strength of adult yellowtail rockfish; this finding would indicate the importance of studying juvenile abundance surveys for management purposes.
Resumo:
Between 1995 and 2002, we surveyed fish assemblages at seven oil platforms off southern and central California using the manned research submersible Delta. At each platform, there is a large horizontal beam situated at or near the sea floor. In some instances, shells and sediment have buried this beam and in other instances it is partially or completely exposed. We found that fish species responded in various ways to the amount of exposure of the beam. A few species, such as blackeye goby (Rhinogobiops nicholsii), greenstriped rockfish (Sebastes elongatus), and pink seaperch (Zalembius rosaceus) tended to avoid the beam. However, many species that typically associate with natural rocky outcrops, such as bocaccio (S. paucispinis), cowcod (S. levis), copper (S. caurinus), greenblotched (S. rosenblatti), pinkrose (S. simulator) and vermilion (S. miniatus) rockfishes, were found most often where the beam was exposed. In particular, a group of species (e.g., bocaccio, cowcod, blue (Sebastes mystinus), and vermilion rockfishes) called here the “sheltering habitat” guild, lived primarily where the beam was exposed and formed a crevice. This work demonstrates that the presence of sheltering sites is important in determining the species composition of man-made reefs and, likely, natural reefs. This research also indicates that adding structures that form sheltering sites in and around decommissioned platforms will likely lead to higher densities of many species typical of hard and complex structure.
Resumo:
Rockfish (Sebastes spp.) juveniles are often difficult to identify by using morphological characters. This study independently applies morphological characters and a key based on mitochondrial restriction site variation to identify juvenile rockf ishes collected in southern California during juvenile rockfish surveys. Twenty-four specimens of Sebastes were examined genetically without knowledge of the morphological assignment. Seventeen fish were identified genetically as S. semicinctus, S. goodei, S. auriculatus, S. jordani, S. levis, S. rastrelliger, and S. saxicola. Identities for the remaining fish were narrowed to two or three species: 1) three fish were either S. carnatus or S. chrysomelas; 2) one fish was either S. chlorosticus, S. eos, or S. rosenblatti; and 3) three fish could have been either S. hopkinsi or S. ovalis, the latter for which we now have distinguishing mitochondrial markers. The genetic and morphological assignments concurred except for the identity of one fish that could only be narrowed down to S. hopkinsi or S. semicinctus by using morphological characters. Genetics excluded more species from multispecies groupings than did the morphological approach, especially species within the subgenus Sebastomus. Species in the genetically unresolvable groups may be similar because of recent divergence or because of interspecies introgression.