183 resultados para NORTHWESTERN ARGENTINA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta colección de la Serie Documentos presentamos a los dibujantes y artistas que pasaron por nuestra institución, lo que representa una tarea nada fácil. Sin embargo, con las imperfecciones del caso, iniciamos este trabajo esperando que, en un futuro próximo, esta iniciativa sea continuada dentro de las diferentes Divisiones que conforman la estructura de nuestro Museo. En este primer artículo mostramos algunas de las imágenes que pudimos rescatar de Edmundo Maristany, una figura polifacética, ya que, entre sus logros se encuentra el descubrimiento de un cometa que hoy lleva su nombre y el escrito de sonetos publicados en la década del cincuenta. A través de sus dibujos de vertebrados, sabemos que trabajó para el Dr. Emiliano Mac Donagh en el Museo de La Plata y para el Dr. Carlos Marelli en el Jardín Zoológico de nuestra ciudad.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gonadal morphology and reproductive biology of the Black Anglerfish (Lophius budegassa) were studied by examining 4410 specimens collected between June 2007 and December 2010 in the northwestern Mediterranean Sea. Ovaries and testes presented traits common among fishes of the order Lophiiformes. Spawning occurred between November and March. Size at first maturity (L50) was 33.4 cm in total length (TL) for males and 48.2 cm TL for females. Black Anglerfish is a total spawner with group-synchronous oocyte development and determinate fecundity. Fecundity values ranged from 87,569 to 398,986 oocytes, and mean potential fecundity was estimated at 78,929 (standard error of the mean [SE] 13,648) oocytes per kilogram of mature female. This study provides the first description of the presence of 2–3 eggs sharing the same chamber and a semicystic type of spermatogenesis for Black Anglerfish. This new information allows for a better understanding of Black Anglerfish reproduction—knowledge that will be useful for the assessment and management of this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mission of NOAA’s Office of National Marine Sanctuaries (ONMS) is to serve as the trustee for a system of marine protected areas, to conserve, protect and enhance biodiversity. To assist in accomplishing this mission, the ONMS has developed a partnership with NOAA’s Center for Coastal Monitoring and Assessment’s Biogeography Branch (CCMA-BB) to conduct biogeographic assessments of marine resources within and adjacent to the marine waters of NOAA’s National Marine Sanctuaries (Kendall and Monaco, 2003). Biogeography is the study of spatial and temporal distributions of organisms, their associated habitats, and the historical and biological factors that influence species’ distributions. Biogeography provides a framework to integrate species distributions and life history data with information on the habitats of a region to characterize and assess living marine resources within a sanctuary. The biogeographic data are integrated in a Geographical Information System (GIS) to enable visualization of species’ spatial and temporal patterns, and to predict changes in abundance that may result from a variety of natural and anthropogenic perturbations or management strategies (Monaco et al., 2005; Battista and Monaco, 2004). Defining biogeographic patterns of living marine resources found throughout the Northwestern Hawaiian Islands (NWHI) was identified as a priority activity at a May 2003 workshop designed to outline scientifi c and management information needs for the NWHI (Alexander et al., 2004). NOAA’s Biogeography Branch and the Papahanaumokuakea Marine National Monument (PMNM) under the direction of the ONMS designed and implemented this biogeographic assessment to directly support the research and management needs of the PMNM by providing a suite of spatially-articulated products in map and tabular formats. The major fi ndings of the biogeographic assessment are organized by chapter and listed below.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In August 2011, the NOAA National Ocean Service (NOS) conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters of the continental shelf in the northwestern Gulf of Mexico (GOM). The original sampling design included 50 randomly selected sites from the Mississippi River delta to the U.S./Mexican border, representing a total area of 111,162 square kilometers; however, vessel failures and inclement weather precluded sampling at 16 sites in the western-most part of the study region. Sampling was completed at the remaining 34 sites in offshore waters between the Mississippi River delta and Freeport, Texas, representing an estimated 75,591 square kilometers. Field sampling followed standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna, fish tissue contaminant levels). Water depths ranged from 13 – 83 m throughout the study area. About 9 % of the area had sediments composed of sands (< 20 % silt+clay), 47 % of the area was composed of intermediate muddy sands (20 – 80 % silt+clay), and 44 % of the sampled area consisted of mud (> 80 % silt+clay). About 50 % of the area (represented by 17 sites) had sediment total organic carbon (TOC) concentrations < 5 mg/g and all of the sites sampled had levels of TOC < 20 mg/g, well below the range associated with potentially harmful effects to benthic fauna (> 50 mg/g). Surface salinities ranged from 23.4 – 36.5 psu, with salinity generally increasing with distance west of the Mississippi River delta. Bottom salinities varied between 31.1 and 36.5 psu, with lowest values occurring at shallow, inner-shelf stations. Surface-water temperatures varied between 29.8 and 31.5 ºC, while near-bottom waters ranged in temperature from 19.4 – 31 ºC. An index of density stratification (Δσt) indicated that portions of coastal shelf waters in the northwestern GOM at the time of this sampling were strongly stratified. Values of Δσt at 19 of the 34 sites sampled in this study (56 % of the study area) ranged from 2.2 to 12.4, which is within the range considered to be indicative of strong vertical stratification (Δσt > 2). Stratification was strongest close to the Mississippi River delta, and decreased with distance west of the delta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This cruise report is a summary of a field survey conducted along a portion of the U.S. continental shelf in northwestern Gulf of Mexico (GOM), at navigable depths along the coastline seaward to the shelf break (~100m) from about 89°30' W to 95°28' W longitude, August 8 – 16, 2011 on NOAA Ship Nancy Foster Cruise NF-11-07-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 34 stations throughout these waters using a random probabilistic sampling design. The original study design consisted of 50 stations extending from the Mississippi delta all the way to the U.S./Mexican border, but vessel failures precluded sampling at 16 stations within the western-most portion of the study area. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. Other indicators, from a human-dimension perspective, were also recorded, including presence of vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing, some preliminary results and observations are reported here. A final report will be completed once all data have been processed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a surveillance strategy to detect deepwater invasive species in the Northwestern Hawaiian Islands. A need for this strategy was identified in the Papahānaumokuākea Marine National Monument Management Plan and the Monument’s Draft Natural Resources Science Plan. This strategy focuses on detecting two species of concern, the octocoral Carijoa riisei and the red alga Hypnea musciformis. Most research on invasive species in the Hawaiian archipelago has focused on shallow water habitats within the limits of conventional SCUBA (0-30 m). Deeper habitats such as mesophotic reefs are much more difficult to access and consequently little is known about the distribution of deepwater invasive species or their impacts. Recent deepwater (>30 m) sightings of H. musciformis and C. riisei, in and near NWHI, respectively, have prompted a call for further research and surveillance of invasive species in deepwater habitats. This report compiles the most up to date information about these two species of concern in deepwater habitats. A literature search and conversations with subject matter experts was used to identify their current distribution, preferred habitat types, optimal detection methods and ways to efficiently sample the vast extent of NWHI. The proposed sampling strategy prioritizes survey effort where C. riisei and H. musciformis are most likely to be found. At coarse spatial scales (tens to hundreds of kilometers), opportunistic observations and distance from the Main Hawaiian Islands, a principal propagule source, are used to identify high-risk islands and banks. At fine spatial scales (meters to tens of kilometers) a habitat suitability model was developed to identify high-risk habitats. The habitat suitability model focused on habitat preferences of C. riisei, since the species is well studied and adequate data exists to map habitats. There was insufficient information to identify suitable habitat for H. muscifomis. Habitat preferences for the algae are poorly understood and there is a lack of data at relevant spatial scales to map those preferences which are known. The principal habitats identified by the habitat suitability model were ledges and the edges of rugose coral reefs, where the shade loving octocoral would likely be found. Habitat suitability maps were developed for seven atolls and banks to aid in survey site selection. The protocol relied on technical divers to conduct visual surveys of benthic habitats. It was developed to increase the efficiency of surveys, maximize the probability of detection, identify important information relevant to future surveys and standardize results. The strategy, model and protocol were tested during a field mission in 2009 at several atolls and islands in NWHI. The field mission did not detect any invasive species among deepwater habitats and much was learned to improve future surveys. Data gaps and improvements are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonindigenous species (NIS) are a major threat to marine ecosystems, with possible dramatic effects on biodiversity, biological productivity, habitat structure and fisheries. The Papahānaumokuākea Marine National Monument (PMNM) has taken active steps to mitigate the threats of NIS in Northwestern Hawaiian Islands (NWHI). Of particular concern are the 13 NIS already detected in NWHI and two invasive species found among the main Hawaiian Islands, snowflake coral (Carijoa riseii) and a red alga (Hypnea musciformis). Much of the information regarding NIS in NWHI has been collected or informed by surveys using conventional SCUBA or fishing gear. These technologies have significant drawbacks. SCUBA is generally constrained to depths shallower than 40 m and several NIS of concern have been detected well below this limit (e.g., L. kasmira – 256 m) and fishing gear is highly selective. Consequently, not all habitats or species can be properly represented. Effective management of NIS requires knowledge of their spatial distribution and abundance over their entire range. Surveys which provide this requisite information can be expensive, especially in the marine environment and even more so in deepwater. Technologies which minimize costs, increase the probability of detection and are capable of satisfying multiple objectives simultaneously are desired. This report examines survey technologies, with a focus on towed camera systems (TCSs), and modeling techniques which can increase NIS detection and sampling efficiency in deepwater habitats of NWHI; thus filling a critical data gap in present datasets. A pilot study conducted in 2008 at French Frigate Shoals and Brooks Banks was used to investigate the application of TCSs for surveying NIS in habitats deeper than 40 m. Cost and data quality were assessed. Over 100 hours of video was collected, in which 124 sightings of NIS were made among benthic habitats from 20 to 250 m. Most sightings were of a single cosmopolitan species, Lutjanus kasmira, but Cephalopholis argus, and Lutjanus fulvus, were also detected. The data expand the spatial distributions of observed NIS into deepwater habitats, identify algal plain as an important habitat and complement existing data collected using SCUBA and fishing gear. The technology’s principal drawback was its inability to identify organisms of particular concern, such as Carijoa riseii and Hypnea musciformis due to inadequate camera resolution and inability to thoroughly inspect sites. To solve this issue we recommend incorporating high-resolution cameras into TCSs, or using alternative technologies, such as technical SCUBA diving or remotely operated vehicles, in place of TCSs. We compared several different survey technologies by cost and their ability to detect NIS and these results are summarized in Table 3.